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Abstract: 

The integration of Deep Neural Networks (DNNs) in the numerical solution of Ordinary Differential Equations 
(ODEs) has emerged as a powerful and versatile paradigm, revolutionizing the landscape of scientific 
computing. This paper presents an in-depth review of the current state-of-the-art methodologies and 
breakthroughs that harness the capabilities of DNNs for tackling the challenges posed by ODEs. We delve into 
diverse aspects, covering a spectrum of architectures, ranging from traditional feedforward networks to more 
sophisticated recurrent and convolutional architectures. The review explores key training strategies 
employed to enhance the efficacy of DNNs in approximating solutions to differential equations. Furthermore, 
we highlight the wide array of applications where these DNN-based approaches have demonstrated 
considerable success, ranging from physics simulations to dynamic systems modeling. The paper also 
addresses the interpretability and generalization challenges that come with integrating DNNs in the context 
of ODEs. In addition to summarizing the existing literature, this review endeavors to provide a critical 
analysis of the current state of research, identifying gaps and potential areas for improvement. The discussion 
extends to the challenges faced by researchers in optimizing DNNs for solving ODEs and proposes avenues for 
future investigations. By presenting a comprehensive overview of the field, this paper serves as an invaluable 
resource for researchers and practitioners seeking to leverage the potential of DNNs in the numerical 
solution of differential equations. 

Keywords: ODE, DNN, ANN, CNN

1. Introduction 
 

Differential equations represent a foundational and indispensable concept in the realm of mathematics, 
serving as a fundamental bridge between functions and their derivatives. These equations stand as a 
powerful mathematical tool for expressing and understanding the intricate relationships that underpin 
numerous phenomena encountered in the realms of science and engineering. The versatility of differential 
equations has made them a cornerstone in a multitude of disciplines, including physics, biology, economics, 
and engineering, offering valuable insights and predictive capabilities [1]. 
At its core, a differential equation can be defined as an equation that involves not only an unknown function 
but also one or more of its derivatives. This inclusion of derivatives in the equation transforms it into a 
dynamic and expressive tool for capturing how a function changes in response to various factors or 
conditions. The primary objective when dealing with a differential equation is to seek a function, often 
referred to as the "solution" or "satisfying function," that precisely adheres to the equation's specifications. 
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This pursuit involves solving for the unknown function in terms of its derivatives, thereby unraveling the 
underlying behavior and relationships that the function exhibits.  
Due to their extraordinary capacities to solve a wide range of engineering problems, DNNs have attracted a 
lot of attention from the engineering community. Particularly, there is tremendous promise for using DNNs to 
solve systems of ODEs, which are used to describe a variety of physical processes. While it is possible to solve 
such systems of ODEs using time-tested traditional numerical techniques, each approach has its own set of 
positive and negative aspects, including considerations for precision, stability, convergence, and 
computational efficiency. 
The fourth-order Runge-Kutta method (RK4) stands out as a popular option among these well-established 
techniques. In situations when the stiffness of the ODE system is not the primary issue, RK4 is particularly 
well-suited because it is known for its effectiveness in managing non-stiff problems. This technique belongs 
to the class of numerical methods known as finite difference techniques, which are recognized for their 
adaptability in approximating solutions to ODEs. 
From 1940s, an alternative computational methodology known as artificial neural networks (ANNs) has been 
used. Because of this advancement in technology, ANNs are now powerful tools in a variety of fields. An 
artificial neural network is essentially a computational system created to demonstrate specific performance 
characteristics similar to biological neural networks. These networks aim to imitate how the human brain 
functions. The input layer, hidden layers, and output layer are the three basic layers that make up an ANN's 
architectural blueprint. Interconnected neurons or units make up each of these layers, and each neuron 
processes and transmits information. When an ANN has more than one hidden layer, it is regarded as a DNN. 
A DNN's ability to handle hard tasks and greater complexity are both facilitated by the presence of numerous 
hidden layers, which makes it an essential advancement in the fields of artificial intelligence and machine 
learning. 
 
2.  Introduction to Differential Equations 
 
Differential equations can be classified into several types based on their characteristics, including: 
 
Ordinary Differential Equations (ODEs): These equations involve a single independent variable and one or 
more derivatives of an unknown function with respect to that variable. They are often used to model 
processes that vary with a single independent variable, such as time. The general form of an ODE is [2]: 

( , , , ,..., ( )) 0F x y y y y n            (1) 
where y is the unknown function, y′ is its first derivative, y′′ is its second derivative, and so on, up to the nth 
derivative. 
Partial Differential Equations (PDEs): These equations involve multiple independent variables and 
derivatives of an unknown function with respect to those variables. PDEs are commonly used to describe 
physical phenomena that depend on more than one variable, such as heat conduction, fluid flow, and wave 
propagation. The general form of a PDE is [3]: 
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where y is the unknown function, and 
i

y

x
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represents partial derivatives with respect to each independent 

variable xi. 
Differential equations are essential for modeling real-world phenomena because they capture how rates of 
change in a system are related to the current state of the system. Solving differential equations can help us 
predict future behavior, optimize processes, and understand the underlying dynamics of various systems. 
The solutions to differential equations can take various forms, depending on the equation's complexity and 
characteristics. These solutions can be expressed as explicit functions, parametric curves, or as numerical 
approximations using computational methods when exact solutions are not readily available. 
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2.1 Classification of Differential Equations 
 
A differential equation is an equation that includes differential coefficients or differentials as one of its two 
main variables [3]. An equation is considered to be ordinary differential when all of the differential 
coefficients are defined in terms of a single independent variable. An equation is said to be partial differential 
if it contains two or more independent variables and partial differential coefficients with respect to any one of 
those variables. 
 
Formulation of a differential equation: 
In order to remove a particular arbitrary constant from a relation including variables and constants, an 
ordinary differential equation is formulated as a mathematical tool. Either the elimination of arbitrary 
constants or arbitrary functions can result in the formation of a partial differential equation. 
 
Solution of differential equation: 
In the realm of differential equations, the fundamental objective is to establish a relationship between 
variables that satisfies the specific conditions laid out by a given differential equation. When such a 
relationship is identified, it is acknowledged as a solution to the differential equation. These solutions are the 
keys to unveiling the intricate behaviors and patterns embedded within various phenomena across science 
and engineering. 
During the process of solving a differential equation, there are distinct categories of solutions to consider. The 
general solution, often referred to as the complete solution, stands out as one of the essential concepts. This 
solution embodies a form where the number of arbitrary constants matches the order of the differential 
equation. These arbitrary constants introduce flexibility into the solution, representing the yet-to-be-
determined parameters that can adapt to different scenarios. On the other hand, specific solutions emerge 
when these arbitrary constants are assigned precise, concrete values. By doing so, the general solution 
transforms into a particular solution tailored to a specific situation or set of conditions. This process of 
assigning values to the constants yields solutions that directly apply to real-world problems, making them 
practical and useful. However, the world of differential equations presents intriguing complexities. In certain 
scenarios, a differential equation may harbor an additional solution that defies derivation from the general 
solution by simply assigning specific values to the arbitrary constants. This enigmatic solution remains 
elusive, standing apart from the general and specific solutions. This unique solution, one that cannot be 
accessed through conventional means, adds depth and mystery to the realm of mathematical modeling. It is 
referred to as a unique solution due to its distinctiveness and inaccessibility through standard parameter 
assignment. 

 
2.2 Traditional Method for the Solution of Differential Equations 
 
The traditional methods for solving differential equations vary depending on the type of differential equation 
(ordinary or partial), its order, linearity, and other characteristics. Here are some of the traditional methods 
commonly used for solving differential equations [3]: 
 
2.2.1 Methods For the Solution of  ODEs: 
 
Separation of Variables: This method is used for first-order ODEs that can be written in the form 

( ) ( )
dy

g x h y
dx

 . By rearranging the terms and integrating both sides, you can solve for y in terms of x. 

 
Exact Differential Equations: If an ODE can be written in the form ( , ) ( , ) 0M x y dx N x y dy   where 

M N

y x

 


 
 it's called an exact differential equation. You can find a potential function (also known as a 

primitive or integrating factor) and use it to find the solution. 
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Homogeneous Differential Equations: In these equations, you can make a substitution to reduce the 

equation to a separable form. For example, if 
dy y

F
dx x

   
 

you can substitute 
y

u
x

   and reduce it to a 

separable form. 
 
Method of Integrating Factors: For linear first-order ODEs, you can multiply both sides by an integrating 
factor that depends only on x or y to make the equation exact and then solve it. 
 
Laplace Transforms: Laplace transforms are useful for solving linear ODEs with constant coefficients. By 
taking the Laplace transform of the equation, solving for the transformed variable, and then taking the 
inverse Laplace transform, you can find the solution. 
 
2.2.2 For Partial Differential Equations (PDEs): 
 
Method of Separation of Variables: This technique is used for solving linear PDEs with boundary or initial 
conditions. It involves assuming that the solution can be expressed as a product of functions, each of which 
depends on only one independent variable. This method is particularly effective for problems with certain 
geometries and boundary conditions. 
 
Method of Characteristics: This method is used for first-order PDEs. It involves finding characteristic curves 
along which the PDE simplifies to an ODE. Solving the ODE along the characteristic curves can lead to a 
solution for the original PDE. 
 
Method of Eigenfunction Expansion: This method is commonly used for linear, homogeneous PDEs. It 
involves expanding the solution in terms of a set of eigenfunctions of the differential operator in the PDE and 
determining the coefficients of the expansion using boundary or initial conditions. 
 
Finite Difference Methods: These are numerical methods used to approximate solutions to PDEs by 
discretizing the domain into a grid and approximating derivatives using finite differences. Finite difference 
methods are particularly useful for solving PDEs on a computer. 
 
Finite Element Methods: These are numerical techniques used to solve PDEs by dividing the domain into 
smaller subdomains (elements) and approximating the solution within each element using piecewise 
functions. Finite element methods are widely used in structural mechanics, heat transfer, and fluid dynamics. 
 
2.3 Numerical Method for the Solution of Differential Equations 
 
Numerical methods are widely used for solving differential equations when analytical solutions are difficult 
or impossible to obtain. These methods involve approximating the solution at discrete points in the domain of 
interest [4]. Here are some common numerical methods for solving differential equations: 
 
Euler's Method: Euler's method is a simple and straightforward numerical method for solving ODEs [5]. It 
approximates the derivative by a finite difference and uses it to update the solution at each step. Euler's 
method is easy to implement but may require small step sizes for accurate results. 
 
Runge-Kutta Methods: Runge-Kutta methods are a family of numerical techniques for solving ODEs. The 
most commonly used is the fourth-order Runge-Kutta method (RK4), which provides better accuracy than 
Euler's method [6]. It involves four intermediate steps at each time interval, leading to a more accurate 
approximation of the solution. 
 
Finite Difference Methods: Finite difference methods are used to discretize both ODEs and PDEs [7]. These 
methods involve dividing the domain into a grid of points and approximating derivatives using finite 
differences. Explicit, implicit, and Crank-Nicolson schemes are commonly used finite difference methods for 
time-dependent problems. 
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Finite Element Methods (FEM): FEM is a numerical technique commonly used for solving PDEs [8]. It 
involves dividing the domain into smaller elements and approximating the solution within each element 
using piecewise functions. FEM is versatile and can handle complex geometries and boundary conditions. 
 
Boundary Element Methods (BEM): BEM is a numerical method often used for solving boundary value 
problems in potential theory, such as Laplace's equation [9]. It focuses on approximating the solution on the 
boundary of the domain and is particularly useful for problems with open boundaries. 
 
2.4 Limitations of the traditional methods 
 
Traditional methods for solving ODEs have been widely used for many years, but they come with several 
limitations: 
 
Limited Applicability: Traditional ODE solvers are often designed for specific types of ODEs, such as linear 
or moderately nonlinear equations. They may struggle to handle highly nonlinear, stiff, or chaotic ODEs 
effectively. 
 
Stiffness Handling: Stiff ODEs, where certain components change much more rapidly than others, can be 
challenging for traditional methods. These methods may require very small time step sizes to maintain 
stability, leading to slow convergence and increased computational cost. 
 
Discretization Errors: Many traditional methods rely on discretizing the ODE problem, which involves 
breaking the time domain into discrete time steps. This discretization can introduce errors, especially when 
dealing with irregular or rapidly changing solutions. 
 
Fixed Time Steps: Most traditional ODE solvers use fixed time steps, which can be inefficient for problems 
where the solution changes slowly in some regions and rapidly in others. Adapting the time step dynamically 
based on the solution's behavior can be more efficient but is not a feature of most traditional methods. 
 
Boundary and Initial Value Constraints: Traditional methods might struggle to handle complex boundary 
conditions or initial value constraints, especially when these conditions are discontinuous or irregular. 
 
High-Dimensional Problems: Traditional methods face computational challenges when applied to high-
dimensional ODE systems. The curse of dimensionality can lead to a rapid increase in computational cost as 
the number of dimensions grows. 
 
Numerical Stability Issues: Some traditional methods may suffer from numerical stability issues, especially 
when dealing with very small or very large numbers, which can lead to inaccurate results. 
While traditional ODE solvers have their place and are suitable for many problems, these limitations have led 
to the development of alternative approaches, such as numerical methods based on neural networks or 
machine learning, which can sometimes overcome these challenges and offer more flexibility and accuracy in 
solving complex ODEs. 
 
3. Artificial Neural Network (ANN) Structure and Solution of ODE 
 
An ANN has one hidden layers stacked between the input and output layers. The schematic diagram of ANN 
structure is shown in Figure 1. 
 
Input Layer: The input layer is the initial layer of an ANN. It receives the raw input data, which can be 
features extracted from real-world data, such as images, text, or numerical values. Each neuron in this layer 
represents one feature. 
 
Hidden Layers: Between the input and output layers, ANNs can have one or more hidden layers. These layers 
are composed of interconnected neurons. The term "hidden" refers to the fact that they are not directly 
connected to the external world (input or output). 
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Output Layer: The output layer is the final layer of the network, responsible for producing the network's 
predictions or classifications. The number of neurons in this layer depends on the specific problem; for 
example, in a binary classification task, there might be one neuron for each class. 
 

 
 

Figure 1: Schematic of ANN architecture 
 
 
Connections (Edges): Each connection (edge) between neurons has an associated weight. These weights are 
learned during the training process and determine the strength of the connection between neurons. The 
weighted sum of inputs is computed for each neuron in the hidden and output layers. 
 
Activation Functions: In the intricate landscape of neural networks, each neuron plays a pivotal role in 
processing information. One of the fundamental operations that a neuron performs is the application of an 
activation function to the weighted sum of its inputs. This seemingly simple step is, in fact, a crucial aspect of 
what makes neural networks powerful and adaptable to a wide array of tasks. The activation function serves 
as the neuron's decision-maker, determining whether it should "fire" or activate based on the information it 
receives. The weighted sum of inputs represents the neuron's level of excitation, akin to assessing how 
strongly it responds to the incoming data. There are several common activation functions in the neural 
network toolbox, each with its unique characteristics and advantages. One such function is the sigmoid 
function, which maps the neuron's excitation to an output between 0 and 1. This function is particularly 
useful in scenarios where the neuron's output needs to represent probabilities or when the problem exhibits 
a logistic or S-shaped behavior. Another widely used activation function is the hyperbolic tangent (tanh) 
function. It shares similarities with the sigmoid function but maps the output to a range between -1 and 1. 
This can be valuable in situations where data has both positive and negative values, allowing the neuron to 
capture more nuanced relationships. In recent years, the rectified linear unit (ReLU) function has gained 
immense popularity. This activation function simply outputs the input if it's positive and zero otherwise. 
ReLU brings a level of simplicity and efficiency to neural networks and has been shown to be particularly 
effective in deep learning architectures. What's remarkable about activation functions is that they introduce 
non-linearity into the neural network model. Without non-linearity, a neural network would be limited to 
approximating linear functions, severely restricting its capacity to model complex, real-world relationships in 
data. Activation functions enable neural networks to transcend linearity, allowing them to approximate highly 
intricate and non-linear functions, making them adaptable to a vast range of tasks, from image recognition to 
natural language processing. In essence, activation functions are the heart of what transforms neural 
networks into powerful function approximators. They imbue these models with the capacity to capture and 
represent the intricate patterns, nuances, and complexities of the data they are designed to process, making 
them a cornerstone of modern machine learning and artificial intelligence. 
 
Biases: Neurons also have associated bias terms, which are constants added to the weighted sum before 
applying the activation function. Biases allow the network to shift and adjust its output. 
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3.1 Fitting Function by ANN 
The universal approximation theorem [10], a fundamental result in the field of artificial neural networks 
(ANNs), asserts that it is possible to approximate any continuous function with a feed-forward neural 
network having just a single hidden layer. This theorem underscores the remarkable approximation 
capabilities of ANNs and their potential to model complex relationships in data. Mathematically, this neural 
network with a single hidden layer can be expressed in a matrix multiplication form, which is a concise way 
to represent the computations taking place within the network. This matrix multiplication form typically 
involves three sets of parameters: 

2 1 1 2( , ) ( )F x w w w x b b  
         (3) 

where w1 and w2 are weights and b1 and b2 are bias. The optimum values of weights are obtained as 

 2
( ) ( ) ( , )

b

a

L w y x F x w dx 
         (4) 

In discrete form 

 2
( ) ( ) ( , )i i

i

L w y x F x w 
         (5) 

where xi belongs to [a,b]. 
If the error is sufficiently low, the ANN can be regarded as an effective approximation of the original function 
within the [a, b] domain. 

( ) ( , )y x F x w           (6) 
 
3.2 Solution a single ordinary differential equation (ODE) using artificial neural networks  
 
Next, we explore the creation of an ANN capable of approximating the solution for a first-order ODE. 

1 0 0( ) ( ( ), )       ( )y t F y t t y t y  
        (7) 

The ANN solution can be written as 

2 1 1 2( , ) ( )F x w w w x b b  
         (8) 

However, the above equation will not satisfy the initial condition 0 0( , )F t w y . 

We can incorporate initial condition as 

0 0ˆ( , ) ( ) ( , )   y t w y t t F t w  
         (9) 

There will be some ‘w’ for which 0 0ˆ( , )y t w y . 

We further have  

1ˆ ˆ( , ) ( ( , ), )y t w F y t w t           (10) 

Defining the derivative as 

 0 0 0
0

( ) ( , )   ( )( , )
ˆ ( , ) ( ) ( , )

y t t F t w t tF t w
y t w t t F t w

t t t

        
  

   (11) 

The optimum values of weights are obtained as 

 
1

0

2

1ˆ ˆ( ) ( , ) ( ( , ), )
t

t

L w y t w F y t w t dt 
                       (12) 

In discrete form 

 2

1ˆ ˆ( ) ( , ) ( ( , ), )i i i
i

L w y t w F y t w t 
                       (13) 

If the error is sufficiently low, the ANN can be regarded as an effective approximation of the original function 
within the [t0, t1] domain. 



www.ijiccs.in        61 
 

ˆ ( , ) ( )y t w y t                           (14) 
 
4.  Deep Neural Network (DNN) Structure and Solution of ODE 
 
A DNN is a specific type of ANN with a deep architecture, meaning it has multiple hidden layers stacked 
between the input and output layers. The key distinction of a DNN is its depth. The schematic diagram of DNN 
structure is shown in Figure 2. Here's an overview of a DNN's structure: 
 
Input Layer: Similar to ANNs, the input layer receives raw data and consists of neurons corresponding to 
input features. 
 
Multiple Hidden Layers: DNNs have two or more hidden layers. The number of layers can vary significantly, 
and this depth enables them to capture hierarchical features and representations in the data. 
 
Output Layer: Like ANNs, DNNs have an output layer responsible for producing predictions or 
classifications. The number of neurons in the output layer depends on the specific task. 
 
Connections (Edges), Activation Functions, and Biases: These elements operate similarly to ANNs. Each 
connection has a weight, and neurons apply activation functions to their inputs, incorporating biases to adjust 
the output. 
 
Feature Hierarchy: The depth of DNNs allows them to automatically learn and represent complex features 
and patterns in data. Lower layers typically learn basic features (e.g., edges in an image), while higher layers 
combine these to form more abstract features (e.g., shapes or objects). 
 

 
 

Figure 2: Schematic of DNN architecture 
 

In summary, both ANNs and DNNs consist of layers of interconnected neurons, but DNNs distinguish 
themselves by having a more extensive hierarchy of hidden layers, which makes them capable of learning 
intricate patterns and representations in data, leading to their effectiveness in solving complex tasks in 
machine learning and artificial intelligence. 
 
 
4.1 Deep Neural Method for the Solution of Differential Equations 
Solving ODEs using DNNs involves training a neural network to approximate the solution of the ODE. This 
approach is often referred to as "Neural ODEs." Here's a basic outline of how you can solve ODEs using DNNs: 
 
Formulate the ODE Problem: Define the ODE problem you want to solve. This includes specifying the ODE 
itself, initial conditions, and any boundary conditions if applicable. The general form of a first-order ODE is: 
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( , )
dy

F t y
dt

            (15) 

 
Data Preparation: Generate a dataset of input-output pairs that can be used to train the neural network. For 
ODEs, this typically involves sampling values of the independent variable (e.g., time t) and calculating 
corresponding values of the dependent variable (e.g., y) using the known ODE. You'll need both the initial 
conditions and a set of time points for which you want to approximate y(t). 
 
Design the Neural Network: Create an DNN architecture that can approximate the solution of the ODE. For 
solving ODEs, neural networks called "ODE solvers" are often used. The most common architecture is based 
on the idea of a continuous neural network that evolves along with the ODE. The network has a continuous 
depth that corresponds to the time variable tt. This is achieved using techniques like residual networks. 
 
Define Loss Function: Define a loss function that measures the error between the predicted solution of the 
ODE by the neural network and the true solution obtained from the ODE itself. A common loss function is the 
mean squared error (MSE). 
 
Training the Neural Network: Train the neural network using your dataset. The training process involves 
adjusting the network's parameters (weights and biases) to minimize the loss function. Techniques like 
gradient descent or its variants are typically used for optimization. 
 
Prediction: After training, you can use the trained DNN to predict the solution of the ODE at any point in the 
domain of interest. You can evaluate the network for a range of time values to approximate the solution y(t). 
 
4.2 Deep neural network for system of ODEs 
  
We contemplate a densely connected network comprising multiple layers. Within this network, there exists a 
single neuron in the input layer representing the independent variable of the system of ODEs. Meanwhile, the 
output layer consists of several neurons (n), each corresponding to one of the unknown variables. 
To train this Deep Neural Network (DNN), we select M sample points from the domain and assemble them 

into a matrix, denoted as    1 1,..... m mX t t      . Each row of this matrix represents a sample point or 

training example. Additionally, we represent the output of the network with a matrix denoted as Y. For a 

specific example,   ,i
k kN t P  signifies the output of the jth unknown corresponding to the ith sample point, 

where 'j' represents the associated parameters, weights, and bias. 

     ˆ , , , 1,......j j j j jy t P a t a N t P j n    .               (16) 

where kP  stands for the corresponding parameters 

We establish a trial solution, denoted as " ŷ  " with equation (13). This trial solution in Equation (3) adheres 
to the initial conditions of the problem. We proceed to train the network with the objective of minimizing the 
total cost function defined in Equation (14). In this context, the cost function seeks to converge to zero, 
converges to zero. Here,  

2

1 1

ˆm n
j

j
i j

dy
J f

dt 

 
  

 
                 (17) 

where,  
     ˆ, ,i i

j j j jf f t y t P
. 

 
5. Literature Review 
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Danang et.al [11] the numerical resolution of an ordinary differential equation (ODE) fundamentally 
characterizes any particular physical phenomenon. Historically, ODEs have been tackled through a 
discretization procedure utilizing the classical finite difference approximation [11]. In more recent times, 
there has been a shift towards employing DNNs for approximating ODE solutions directly, albeit with the 
caveat that DNNs cannot operate independently without optimization. In our research endeavors, we embark 
on a quest for innovation by introducing a novel and synergistic approach that marries the power of DNNs 
with the optimization prowess of a Genetic Algorithm (GA). This fusion of two distinct computational 
paradigms forms the foundation of our research, offering a fresh perspective on solving complex problems. 
The Genetic Algorithm, a bio-inspired optimization technique, takes center stage in our methodology. It 
serves as a vehicle for initializing a population of trainable parameters within the DNN framework. This 
ingenious step streamlines the training process and enhances its efficiency, all within a single generation of 
the Genetic Algorithm. This integration enables us to harness the intrinsic capabilities of DNNs to model and 
adapt to intricate data patterns, while the Genetic Algorithm orchestrates the optimization of these 
parameters. Our primary research focus revolves around harnessing the remarkable potential of this DNN-GA 
hybrid solution to tackle a broad spectrum of problems, encompassing both linear and nonlinear ODEs. These 
equations encapsulate critical phenomena across numerous domains, including physics, engineering, and 
biology. By effectively addressing ODEs, our approach opens doors to breakthroughs and advancements in 
these fields. 
 
Dufera, Tamirat Temesgen [12] the primary focus of this paper is to utilize deep artificial neural networks 
for the purpose of solving systems of ordinary differential equations. We have devised a vectorized algorithm 
and translated it into Python code for implementation [12]. Our study encompasses a series of experiments 
aimed at determining the optimal neural architecture. To train the neural network effectively, we have 
harnessed the adaptive moment minimization method. To gauge the performance of our approach, we have 
conducted a comparative analysis with a traditional numerical method, specifically the fourth-order Runge-
Kutta method. Our findings demonstrate that the artificial neural network exhibits superior accuracy, 
particularly when dealing with smaller grid point configurations. 
 
Shubham and Vishal [13] conducted research to explore the resolution of second-order differential 
equations through the application of various approximation techniques, including the finite difference 
method [13]. Furthermore, we conducted a comparative analysis between the solutions obtained through 
these approaches and the exact solution of the second-order differential equation. The findings reveal that the 
Finite Difference Method emerges as the approach yielding the most accurate solution for the differential 
equation. It can be deduced that the solutions derived from the Galerkin Method and the Rayleigh-Ritz 
Method exhibit similarities, indicating a high degree of concurrence between the Galerkin approach and the 
Rayleigh-Ritz method. 
 
G. O. Akinlabi et al [14] conducted a study on Numerical approximation of second-order boundary value 
problems via hybrid boundary value method [14]. In this study they have applied the Hybrid Boundary Value 
Method (HyBVM) to solve two second order BVPs with boundary conditions, comparing the results to other 
BVMs in the literature, as well as the maximum error and efficiency. The Numerov method was used to build 
these methods and data from both on-step and off-step points were used. 
 
Bakirova, E. A., et al [15] investigates the convergence, stability, and accuracy of a suggested numerical 
approximation approach for solving the boundary value problem of a parameterized integro-differential 
equation. A parameterized loaded differential equation is used to approximate the integro-differential 
equation [15]. Parameterized loaded differential equation receives a new general solution, and its 
characteristics are discussed. It is shown that the general solution to the loaded differential equation with a 
parameter may be written as a set of linear algebraic equations with respect to arbitrary vectors, and that 
these equations are solvable. Solution of the Cauchy problems for ODE yields the system's coefficients and 
right-hand sides. The boundary value problem for the parameterized loaded differential equation is 
considered, and several algorithms are presented for its solution. A connection is made between the 
qualitative features of the original problem and the approximation, and differences between the two are 
estimated. 
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Jajarmi, and Dumitru [16] conducted a study on New Iterative Method for the Numerical Solution of High-
Order Non-linear Fractional Boundary Value Problems [16]. They devise a productive numerical method for 
solving a class of nonlinear fractional boundary value problems (BVPs). The approach that has been 
suggested does not include any perturbation, discretization, linearization, or other restrictive assumptions. 
Instead, it generates an exact solution in the form of a series that converges in a consistent manner. In 
addition, the exact solution can be found by simply solving a series of linear BVPs of fractional order. As a 
result, the approach that was presented is both effective and simple to put into practice from a pragmatic 
point of view. They offer an iterative technique that is both efficient in terms of computation and capable of 
producing an approximation of the solution that is sufficiently accurate. 
 
Anitescu  et. al. ([17] introduced an approach to address PDE by employing artificial neural networks 
alongside an adaptable collocation technique. In this process, we initiate training with a sparser grid of points 
and gradually incorporate additional points in subsequent stages, guided by the residual's magnitude at a 
broader array of evaluation points [17]. This methodology enhances the neural network's robustness in 
approximating solutions and can yield substantial computational efficiencies, especially in cases where the 
solution exhibits non-smooth behavior. We provide numerical outcomes for standard problems involving 
scalar-valued PDEs, including the Poisson and Helmholtz equations, as well as an inverse acoustics problem. 
 
Amin, and Meidani [18] developed efficient numerical methods to solve high-dimensional random PDEs has 
proven to be a formidable challenge, primarily due to the widely recognized curse of dimensionality [18]. In 
response to this challenge, we introduce a novel solution framework that leverages deep learning techniques. 
More specifically, our approach involves approximating the random PDE by employing a feed-forward fully-
connected deep residual network. This network can enforce initial and boundary constraints, either strongly 
or weakly, as required. What sets this framework apart is its mesh-free nature, enabling it to handle irregular 
computational domains effectively. The parameters of the approximating deep neural network are 
determined through an iterative process, utilizing various adaptations of the Stochastic Gradient Descent 
(SGD) algorithm. To validate the effectiveness of our proposed frameworks, we conducted numerical 
experiments on diffusion and heat conduction problems. These experiments showcased the remarkable 
accuracy of our approach, comparing favorably to the results obtained through Monte Carlo-based finite 
element methods that have converged. 
 
Biala T. A. et. al [19] studied on the effectiveness of Boundary Value Methods (BVMs) on second-order PDEs 
[19]. With the help of the Lanczos-Chebyshev reduction technique, the PDEs are changed into a set of ODEs of 
the second order. We talk about the requirements that must be met for the BVMs to converge, as well as the 
computational difficulties of the methods. There are several numerical examples provided to demonstrate 
how straightforward and accurate the methodology is. In addition, the Boundary Value Methods have been 
applied in order to make approximations of second-order PDEs. In order to accomplish this goal, the Lanczos-
Chebyshev reduction method was applied to the (PDEs, which resulted in the formation of an analogous 
second-order system. It can be shown that this method is both accurate and straightforward in its execution. 
 
Omar Zurni [20] examined that by utilizing block approaches, it is possible to directly answer the second 
order boundary value issue [20]. This approach may be done either with or without the usage of initial values, 
depending on your preference. It has not, however, been looked into whether or not a comparison of the 
impacts of beginning values on the outcomes obtained from solving a second order boundary value issue is 
possible. As a result, a two-step block technique for the numerical solution of a two-point second order 
boundary value issue is provided within the scope of this study. The solution to boundary value issues may be 
found by deriving a technique from Taylor series expansions. This leads to a family of block matrix equations, 
which can be utilized to solve the problems. The approach is applied using starting and non-starting data, and 
the results are compared with other methods that have previously been developed. When applied using initial 
values, the findings demonstrate that the method's accuracy improves significantly. 
 
Pandey Pramod Kumar [21] presented an effective numerical approach to the resolution of a system of 
two-point boundary value problems with Dirichlet boundary conditions And go through the steps involved in 
constructing a method of the Numerov type by supposing an additional continuity constraint on the answer 
[21]. The order of the methodology that is being proposed is quadratic. This strategy that is being proposed is 
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useful for tackling difficulties involving obstacles. Also considered an obstacle issue, which was addressed 
using the proposed approach in order to demonstrate both the effectiveness and the precision. The results 
are analyzed and compared to the other approaches. 
 
Chedjou et.al [22] introduced and validates a comprehensive and universally applicable computational 
approach for addressing nonlinear differential equations (NDEs). This approach is grounded in 
neurocomputing principles and leverages cellular neural networks (CNNs) [22]. The CNN processor 
architecture is employed to guarantee high precision, stability, convergence, and minimal memory usage. 
Notably, this paper tackles a significant challenge by ensuring these computational characteristics across all 
system states, whether regular or chaotic, and under all possible bifurcation conditions that NDEs may 
exhibit. A key essence of this paper is to formulate and demonstrate a solving methodology that establishes 
CNN processors, whether implemented in hardware or software, as universal solvers for NDE models. 
 
Jahanshahi Mohammad et al [23] investigated the solutions to boundary value issues are based on turning 
a differential equation with boundary conditions into a mixed Voletrra and Fredholm integral equation [23]. 
After that, we will utilize the specific case of the successive approximations approach to solve the equation 
that we have got. Convergence analysis and error estimate are both covered in this article. Additionally, a 
numerical example is provided to illustrate how accurately the suggested method works. 
 
Mukhtar, Nur Zahidah, et al. [24]  presented a four point direct block one-step approach for solving directly 
the general second order non stiff initial value problems (IVPs) of ODE is shown here [24]. The mathematical 
issues that emerge in the real world may be written down in the form of differential equations. These 
problems can be found in the domains of science and engineering, such as fluid dynamics, electric circuits, the 
motion of rockets and satellites, and other areas of application. The approach that has been presented would 
estimate the approximation solutions at four different sites at the same time by employing varying step sizes. 
The effectiveness of the suggested strategy is demonstrated through the use of numerical results. 
 
Xuemei Zhang et.al [25] investigates the existence of solutions for a family of nonlinear impulsive integro-
differential equations in Banach spaces that have second-order boundary-value problems with integral 
boundary conditions [25]. The fixed point theorem for stringent set contraction operators serves as the 
foundation for the reasoning. An example is being developed in the meantime to illustrate the key findings. 
 
5.2 Limitations of State of the art Methods 
 
While DNNs show promise for solving ODEs, they also come with certain limitations and challenges. Here are 
some key limitations of DNN-based ODE solutions: 
 
Data-Intensive Training: DNNs, especially deep architectures, often require large volumes of data for 
training. In the context of ODEs, obtaining labeled data with known solutions for a wide range of ODE types 
and conditions can be challenging and may limit the applicability of DNNs. 
 
Generalization to Unseen ODEs: DNNs may struggle to generalize effectively to ODEs with different 
characteristics, such as nonlinearities, stiff behavior, or high dimensionality, especially if the training data 
doesn't cover a diverse set of scenarios. Generalization may require substantial amounts of data and 
sophisticated network architectures. 
Numerical Stability: Ensuring numerical stability, especially when dealing with stiff ODEs or rapid changes 
in solutions, can be challenging. DNNs may not always maintain stability during the solution process, leading 
to unreliable results. 
 
Choice of Hyperparameters: DNNs require careful tuning of hyperparameters such as the network 
architecture, learning rate, batch size, and regularization techniques. Selecting appropriate hyperparameters 
can be challenging and can significantly affect the performance of the DNN-based solver. 
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Overfitting and Data Noise: DNNs are susceptible to overfitting when the training dataset is noisy or 
contains outliers. Robust techniques are required to mitigate the impact of noisy data on the accuracy of 
DNN-based ODE solutions. 
 
Boundary and Initial Conditions: Incorporating boundary and initial conditions into DNN-based ODE 
solvers can be non-trivial, and ensuring that these conditions are satisfied accurately is a challenge, 
particularly for PDEs. 
 
To mitigate these limitations, ongoing research is exploring methods for enhancing the robustness, 
interpretability, and generalization capabilities of DNN-based ODE solvers. Additionally, hybrid approaches 
that combine the strengths of DNNs with traditional numerical methods are being investigated to address 
specific challenges in ODE solving. 
 
6.  Future Directions 
 
Hybrid Approaches: Investigate the integration of DNNs with traditional numerical methods to develop 
hybrid approaches that capitalize on the strengths of both. This may enhance the stability, efficiency, and 
interpretability of the solutions obtained for ODEs. 
 
Uncertainty Quantification: Explore methodologies for incorporating uncertainty estimates into DNN-based 
solutions, providing confidence intervals and uncertainty quantification for the predictions. This is crucial for 
applications in scientific simulations where understanding the reliability of the results is imperative. 
 
Adaptive Learning Rates: Develop adaptive learning rate schemes that dynamically adjust the learning rates 
during training to improve convergence and efficiency, especially for ODEs with complex dynamics or rapidly 
changing solution behaviors. 
 
Incorporating Prior Knowledge: Investigate ways to incorporate prior knowledge, domain-specific 
information, or physical constraints into the DNN architectures to enhance the interpretability and accuracy 
of the solutions, particularly in scientific and engineering applications. 
 
Parallelization Strategies: Explore parallelization strategies tailored for DNN-based ODE solvers to leverage 
the capabilities of modern parallel computing architectures, enhancing scalability and reducing 
computational time for large-scale simulations. 
 
Transfer Learning: Explore the potential of transfer learning techniques to train DNNs on a diverse set of 
ODEs, allowing for better generalization across different types of problems and domains. 
 
Benchmarking and Standardization: Establish benchmarks and standardized datasets for evaluating the 
performance of DNN-based ODE solvers. This would facilitate fair comparisons between different 
methodologies and encourage the adoption of best practices in the field. 
 
Explainability and Interpretability: Develop techniques to enhance the explainability and interpretability 
of DNN-based solutions for ODEs, ensuring that the models provide insights into the underlying dynamics and 
contributing factors. 
 
7. Conclusion 
 
In conclusion, the integration of DNNs for solving ODEs represents a dynamic and promising area of research 
with vast potential for transformative impacts on scientific computing and applied mathematics. This 
comprehensive review has examined the current landscape, methodologies, and challenges associated with 
leveraging DNNs for the numerical solution of ODEs. The survey reveals the remarkable progress made in 
harnessing the expressive power of DNNs to approximate solutions for a diverse range of ODEs, from simple 
to complex systems. The flexibility of DNN architectures, coupled with advancements in training strategies, 
has enabled the successful application of these models across various domains, including physics simulations, 
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engineering problems, and dynamic systems modeling. However, challenges such as interpretability, 
uncertainty quantification, and the need for hybrid approaches persist. Addressing these challenges is crucial 
to further enhance the reliability and applicability of DNN-based ODE solvers. Future directions should focus 
on developing hybrid methodologies, incorporating uncertainty estimates, and enhancing the interpretability 
of solutions. Additionally, adaptive learning rates, transfer learning, and the incorporation of prior knowledge 
hold promise for improving the efficiency and generalization capabilities of DNN-based approaches. As we 
move forward, collaborative efforts between researchers in machine learning, numerical analysis, and 
domain-specific sciences will be pivotal in advancing the field. By fostering interdisciplinary collaborations, 
we can unlock new insights and synergies that propel the development of robust and practical solutions for a 
wide range of ODE applications. 
In summary, while DNNs have showcased their potential in revolutionizing the numerical solution of ODEs, 
there remains a rich landscape for exploration and refinement. This review aims to inspire and guide future 
research endeavors, encouraging the scientific community to push the boundaries of innovation and 
contribute to the ongoing evolution of this exciting and transformative field. 
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