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Abstract: 

This paper provides a comprehensive review of deep neural network (DNN) approaches in predictive 
modeling of mental disorders through the analysis of electroencephalography (EEG) signals. The growing 
significance of leveraging advanced computational techniques in mental health research is explored, with a 
focus on DNN methodologies. The review encompasses an analysis of various studies and methodologies 
employed for predictive modeling using EEG data, highlighting the strengths and limitations of different DNN 
architectures. Insights into the potential applications of predictive modeling for mental disorders, such as 
early diagnosis and personalized treatment strategies, are discussed. Additionally, challenges and future 
directions in this burgeoning field are outlined to guide further research endeavors. This paper serves as a 
valuable resource for researchers, practitioners, and professionals seeking a nuanced understanding of the 
evolving landscape of predictive modeling for mental disorders utilizing EEG signal analysis and DNN 
approaches. 

Keywords: Mental disease, EEG, CNN, DNN

1. Introduction 
 

An unexpected revelation has emerged from the World Health Organization (WHO), shedding light on the 
alarming fact that an estimated 322 million individuals across the globe are grappling with the profound 
burden of depression. This staggering figure underscores the pivotal role that depression plays in the 
escalating prevalence of disability cases worldwide. This alarming statistic underscores the profound global 
impact of this mental illness. The identification and diagnosis of depression hinge on a spectrum of 
observable symptoms. Individuals affected by depression often describe a persistent and overwhelming 
sense of sorrow, which is frequently accompanied by emotions of helplessness and shame. Furthermore, 
those who battle depression typically experience a marked loss of interest in previously cherished hobbies 
and activities. They commonly wrestle with an overwhelming sense of fatigue and lethargy, as their energy 
levels plummet and their ability to maintain focus deteriorates. Moreover, depression frequently leads to 
disruptions in crucial daily activities. Variations in appetite, which can manifest as a noticeable increase or 
decrease, become a conspicuous hallmark. Sleep disturbances, such as difficulty falling asleep or excessive 
drowsiness, drastically disrupt sleep patterns. As a result of depression, even the most basic routines, from 
work obligations to personal relationships, become challenging to execute and derive pleasure from [1]. The 
intricate interplay of these symptoms vividly illustrates the severe toll that this condition exacts on those who 
experience it. Poverty, unemployment, traumatic life experiences, physical illnesses, and struggles with 
alcohol or drug abuse are just a handful of the many contributing factors that can precipitate the onset of 
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depression [1]. Recent measures implemented in response to the COVID19 pandemic, such as lockdowns, 
quarantine protocols, and social isolation, have amplified the prevalence of depression [2–4]. This surge in 
cases is a cause for concern, given that depression represents a significant public health risk and is linked to 
severe outcomes, including suicide [5]. Emphasizing the importance of early detection is paramount, given 
the gravity of this issue and its farreaching consequences for individuals and communities. Identifying 
depression at an early stage can facilitate faster and more effective treatment. Hence, the development of a 
reliable and efficient tool for the identification or even prediction of depression takes on even greater 
significance. Such a tool would not only enhance the lives of those affected but also alleviate the strain on 
healthcare systems and society as a whole. Electroencephalogram (EEG) signals, which exhibit nonstationary, 
highly intricate, noninvasive, and nonlinear characteristics, offer a unique window into the functioning of the 
human brain [6]. Due to the inherent complexity of these signals, anomalies are challenging to discern with 
the naked eye. Nonetheless, these physiological signals are incredibly valuable for depression identification 
[7]. The basic diagram for the EEG based signal classification system is shown in Figure 1. Here, the initially 
recorded EEG signal is preprocessed to get rid of unwanted artifacts, next models are applied to extract 
features of the EEG signals which are further used to classify normal and depressed person.  
 

 
Figure 1: EEG based signal classification  

 
A computational framework known as deep learning employs a hierarchical structure, consisting of a series of 
algorithms utilizing hidden neural units or neurons [8]. These models empower computers to derive 
sophisticated and nuanced concepts from basic data inputs. As these concepts are learned, they serve as the 
fundamental building blocks for the development of additional layers of understanding. Furthermore, these 
methodologies incorporate multiple layers of processing, each playing a pivotal role in pattern recognition 
and deciphering the underlying data structure [9]. The innate capacity of deep learning architectures for 
automated learning and the extraction of significant features from raw input data is what make them so 
appealing. This stands in contrast to the limitations often associated with traditional machine learning 
techniques [10]. Manual analysis can also be a challenging task given the intricate and nuanced nature of EEG 
data [11]. Consequently, deep learning solutions have gained popularity in related contexts as they offer an 
efficient way to extract implicit nonlinear features from EEG data with minimal manual effort [12]. These 
applications underscore the formidable power of deep learning in making sense of complex data across a 
wide range of domains, including those with substantial real-world impact. 
 
2.  Introduction to EEG Signals 

Electroencephalography (EEG) is a non-intrusive neuroimaging method designed to capture the electrical 
activity produced by the brain. This approach entails the placement of electrodes on the scalp to document 
voltage fluctuations arising from the combined electrical signals of brain cells, or neurons. EEG signals 
provide valuable insights into the brain's dynamic activity and are widely used in clinical, research, and 
diagnostic settings. 

Basic Principles: The brain's neurons communicate by generating electrical potentials, and these signals can 
be detected on the scalp. EEG captures the summation of these electrical activities, offering a temporal 
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resolution in the order of milliseconds. It reflects neural processes related to sensory perception, motor 
control, cognition, and emotional responses. 

Electrode Placement: EEG electrodes are strategically positioned on the scalp, typically following 
standardized systems such as the 10-20 system [12]. The electrodes are arranged in a grid, and their 
placement allows for the monitoring of electrical activity across different regions of the brain. Common 
electrode configurations include Fp1, Fp2, F7, F8, C3, C4, P3, P4, O1, and O2, among others. 

 

Figure 2: Schematic diagram of channel position in the brain 

Frequency Bands: EEG signals are characterized by different frequency bands, each associated with specific 
brain states and activities. The main frequency bands include delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), 
beta (12-30 Hz), and gamma (>30 Hz) [12]. Changes in the power and distribution of these frequency bands 
can offer insights into cognitive processes, arousal levels, and pathological conditions. 

Rhythm Waveform 
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Delta [1-4] Hz 
 

 

 
 

 
Figure 3: Schematic diagram of EEG waveform rhythm 
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Challenges and Advances: Despite its many applications, EEG signals are sensitive to artifacts, such as 
muscle activity and external interference, which can affect data quality. Advanced signal processing 
techniques, including machine learning and deep learning, are increasingly being applied to enhance the 
extraction of meaningful information from EEG data, leading to more accurate and nuanced interpretations. 

3. Comparison of State of the Art Classification Technologies 

Convolutional Neural Network: Convolutional Neural Networks (CNNs) are a class of deep neural networks 
specifically designed for processing grid-like data, making them particularly effective in computer vision 
tasks. The fundamental building blocks of a CNN include convolutional layers, pooling layers, and fully 
connected layers. In the convolutional layers, filters or kernels convolve across the input data to detect spatial 
hierarchies and local patterns. These layers enable the network to automatically learn relevant features from 
raw data, reducing the need for manual feature engineering. Pooling layers follow convolutional layers, down-
sampling the spatial dimensions of the representation and enhancing translation invariance. Fully connected 
layers at the end of the network combine high-level features for classification or regression. CNNs exhibit 
parameter sharing, where the same set of weights is used across different spatial locations, significantly 
reducing the number of parameters compared to fully connected networks. This parameter sharing 
contributes to the computational efficiency of CNNs, making them suitable for large-scale image datasets. 
Training a CNN involves adjusting the weights using optimization algorithms and backpropagation. While 
CNNs excel in image-related tasks, their effectiveness is contingent on appropriate hyperparameter tuning, 
and they may lack interpretability due to their "black-box" nature. Ongoing research aims to enhance the 
interpretability and robustness of CNN architectures across various applications. 

Recurrent Neural Network: Recurrent Neural Networks (RNNs) constitute a class of neural networks 
designed to process sequential data by maintaining a hidden state that captures information from previous 
time steps. The core feature of RNNs is their ability to handle input sequences of varying lengths, making 
them well-suited for tasks such as natural language processing and time series analysis. In an RNN 
architecture, each step involves the input being processed along with the hidden state from the previous time 
step. This recurrent connection allows RNNs to capture temporal dependencies and context in sequential 
data. However, traditional RNNs face challenges in retaining long-term dependencies due to the vanishing 
and exploding gradient problems during training. Long Short-Term Memory (LSTM) networks and Gated 
Recurrent Units (GRUs) are variations of RNNs that address these issues by incorporating specialized gating 
mechanisms. LSTMs, for instance, utilize memory cells and gates to selectively retain and update information, 
enabling them to capture long-term dependencies more effectively. Despite their effectiveness, RNNs still 
encounter challenges such as difficulties in parallelization and sensitivity to sequence lengths. Ongoing 
research explores variations and improvements, such as attention mechanisms and Transformer 
architectures, to enhance the performance of RNNs across a broad range of sequential data applications. 

Deep Neural Network: Deep Neural Networks (DNNs) represent a class of artificial neural networks with 
multiple layers, allowing them to model intricate relationships within data. The architecture of a DNN 
typically consists of an input layer, one or more hidden layers, and an output layer. Each layer contains nodes, 
or neurons, with associated weights and biases that are adjusted during training. The network's depth, 
achieved through stacking multiple layers, enables it to automatically learn hierarchical representations of 
features from raw input. Activation functions introduce non-linearity into the model, allowing DNNs to 
capture complex patterns and relationships in data. The process of training a DNN involves forward 
propagation, where input data is processed through the network to generate predictions, and backward 
propagation, which adjusts the weights and biases based on the computed error. While DNNs have 
demonstrated remarkable success in various domains, including image and speech recognition, they face 
challenges such as the need for substantial labeled data, sensitivity to hyperparameters, and the potential for 
overfitting. Techniques like regularization, dropout, and batch normalization are employed to mitigate these 
challenges and improve the generalization ability of DNNs. Ongoing research explores novel architectures, 
optimization algorithms, and transfer learning strategies to further enhance the efficiency and applicability of 
deep neural networks across diverse tasks. 
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The Table 1, provides a concise overview of the key features, strengths, and use cases of CNNs, RNNs, and 
DNNs, highlighting their respective architectures and applications in different domains. It's important to note 
that while CNNs and RNNs have specific strengths in handling certain types of data, DNNs serve as a more 
general framework that can be adapted to various machine learning tasks. The choice of architecture depends 
on the nature of the data and the requirements of the specific task at hand. 

Table 1: Comparison of CNN, RNN and DNN 
Feature CNN RNN DNN 

Architecture Specialized for grid data Designed for sequential data General architecture 

Layer Type Convolutional layers Recurrent layers Fully connected layers 

Use Cases 
Image recognition, object 
detection 

Natural language processing, 
time-series prediction 

Various machine learning 
tasks 

Key Strengths Spatial feature learning 
Sequential information 
retention 

Versatility in learning 
hierarchy 

Memory 
Handling 

Limited context preservation 
in local regions 

Long-term dependency 
modeling 

Limited context 
preservation across layers 

Training 
Complexity 

Moderate Moderate to high Moderate to high 

Parallelization Highly parallelizable Sequential processing Moderately parallelizable 

Data 
Requirements 

Grid-structured data Sequential and time-series data 
Structured and 
unstructured data 

Applicability Computer vision tasks 
Natural language processing, 
time-series prediction 

General machine learning 
tasks 

Examples 
Image classification, object 
detection 

Language modeling, speech 
recognition 

Various supervised 
learning tasks 

 
4. Important Processes for DNN based Mental Disorder Prediction 
 
To conduct a predictive modeling analysis for mental disorders using EEG (Electroencephalogram) signal 
data, several systematic steps are typically followed to ensure the accuracy and reliability of the predictive 
model. These steps involve data collection, preprocessing, feature extraction, model selection, training, 
evaluation, and validation. Here's an expanded explanation of each step: 
 
Data Collection: The first crucial step is the collection of EEG signal data from individuals. This data is 
typically gathered using electrodes placed on the scalp. The number and placement of electrodes can vary 
depending on the specific research or clinical requirements. It's essential to ensure that the data collection 
process follows established ethical guidelines and informed consent procedures. 
 

Preprocessing: After the collection of EEG data, a critical phase in the data processing pipeline involves 
addressing the presence of diverse noise and artifacts inherent in the recordings, such as eye blinks, muscle 
movements, and electrical interference. To ensure the reliability and accuracy of subsequent analyses, 
various preprocessing steps are employed to clean the EEG data. One prevalent issue tackled during 
preprocessing is the removal of unwanted noise. Techniques like wavelet transforms play a significant role in 
identifying and isolating noise components in the data. By decomposing the EEG signal into different 
frequency bands, wavelet transforms enable the separation of genuine neural activity from undesired 
artifacts. Independent Component Analysis (ICA) is another powerful tool in the preprocessing arsenal. ICA 
works by decomposing the EEG data into statistically independent components, allowing for the identification 
and removal of components associated with artifacts. This method is particularly effective in isolating sources 
such as eye blinks or muscle activity from the neural signal. Furthermore, filtering techniques are commonly 
applied to eliminate unwanted frequency components that may distort the EEG signal. Low-pass, high-pass, 
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and band-pass filters are strategically used to retain the frequency range relevant to neural activity while 
attenuating noise and artifacts outside this range. Filtering enhances the signal-to-noise ratio, enabling a 
clearer representation of neural information. 

Feature Extraction: Following the preprocessing of EEG data, the next crucial step involves the extraction of 
meaningful features. This process is essential for distilling relevant information from the preprocessed EEG 
signals, laying the groundwork for subsequent predictive modeling. Features extracted from EEG data can be 
broadly categorized into linear and nonlinear types, each capturing distinct aspects of neural activity. Linear 
features often include measures such as power in specific frequency bands. The distribution of power across 
different frequency ranges, known as spectral power, provides valuable insights into the intensity and 
distribution of neural activity. For example, the power in delta, theta, alpha, beta, and gamma frequency 
bands can be computed to characterize different aspects of brain function. On the other hand, nonlinear 
features delve into the complexity and dynamics of EEG signals. Measures like wavelet entropy, which 
quantifies the irregularity and unpredictability of signals across different scales, fall into the category of 
nonlinear features. These nonlinear descriptors capture intricate patterns and nuances within the EEG data 
that may not be fully captured by linear measures. Feature extraction techniques play a crucial role in 
condensing the voluminous EEG data into a set of informative features that can be leveraged for predictive 
modeling. The selection of specific features depends on the research or clinical objectives and the 
characteristics of the EEG data under investigation. Well-chosen features not only enhance the 
interpretability of the data but also contribute to the development of robust and accurate predictive models. 
In essence, feature extraction acts as a bridge between raw EEG data and the subsequent modeling phase, 
facilitating a more nuanced understanding of the underlying neural processes. 

Data Splitting: In the data preparation phase, the dataset is meticulously partitioned into three distinct 
subsets: the training set, the validation set, and the test set. Each subset serves a crucial role in the iterative 
process of developing and refining a predictive model. The training set, constituting the largest portion of the 
dataset, acts as the foundation for the model's learning process. During this phase, the model adjusts its 
internal parameters by analyzing patterns and relationships within the training data, effectively acquiring the 
knowledge necessary for making predictions. Following the initial training phase, the validation set assumes a 
pivotal role in the model development pipeline. This subset is utilized to fine-tune the hyperparameters of the 
model, ensuring optimal performance and preventing overfitting. By assessing the model's performance on 
data not used during training, the validation set provides a reliable gauge of the model's ability to generalize 
to unseen instances. Once the model has undergone iterative refinement based on the validation set, the 
ultimate test of its efficacy lies in the test set. This distinct subset, held separate from both the training and 
validation sets, serves as an unbiased assessment ground. The model's accuracy and generalization 
capabilities are rigorously evaluated using the test set, providing an unbiased measure of how well the model 
is expected to perform on entirely new, unseen data in real-world scenarios. This three-fold division of the 
dataset into training, validation, and test sets establishes a robust framework for the development, fine-
tuning, and evaluation of predictive models, ensuring their reliability and effectiveness in practical 
applications 

Model Selection: Upon the completion of feature extraction from EEG data, the selection of an appropriate 
machine learning or deep learning model becomes a critical step in the predictive modeling process. The 
choice of model depends on the specific nature of the predictive task, the characteristics of the dataset, and 
the desired outcomes. Various algorithms, each with its strengths and suitability for different types of data, 
are considered by researchers or clinicians. CNNs, known for their effectiveness in handling grid-like data, are 
often employed when the spatial relationships and patterns within the EEG signals are crucial. CNNs excel in 
image-related tasks and have been successfully applied to capture spatial hierarchies and local features in 
EEG data, particularly in tasks like brain-computer interface applications or image-based neuroimaging. 
RNNs are favoured when the temporal dynamics and sequential dependencies within the EEG signals are 
paramount. RNNs, with their ability to capture information over time, are well-suited for tasks such as time 
series prediction or the analysis of EEG recordings where the temporal sequence of neural activity is vital. 
SVMs, a traditional machine learning algorithm, are known for their versatility and effectiveness in 
classification tasks. SVMs can be applied when the predictive task involves categorizing EEG data into 
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different classes or conditions. SVMs are particularly useful in scenarios where the dataset is not as large or 
complex compared to deep learning counterparts. 

 The selection of the most suitable algorithm is not limited to CNNs, RNNs, or SVMs; other machine learning 
models, such as decision trees, random forests, or ensemble methods, may also be considered based on the 
specific requirements of the task at hand. Ultimately, the choice of model is a nuanced decision that takes into 
account the intricacies of the EEG data, the complexity of the predictive task, and the computational resources 
available for training and inference. Researchers and clinicians leverage their expertise to make informed 
decisions that optimize the performance and interpretability of the chosen model for the given application. 

Training: Once the appropriate machine learning or deep learning model is selected, the training phase 
ensues using the designated training dataset. This crucial step involves exposing the model to the 
preprocessed EEG data and guiding it to learn the intricate mapping between the extracted features and the 
target outcome, which could be a specific diagnosis like depression. The essence of the training process lies in 
the optimization of the model's parameters. These parameters are the internal weights and biases that the 
model adjusts iteratively to minimize the prediction errors. The objective is to enhance the model's ability to 
accurately predict the target outcome based on the learned patterns and relationships within the training 
data. The optimization is typically achieved through the use of an appropriate optimization algorithm, such as 
stochastic gradient descent or its variants. During training, the model continuously refines its internal 
parameters, making adjustments to better align its predictions with the actual outcomes in the training 
dataset. This iterative optimization process continues until the model achieves a state where further 
adjustments do not significantly reduce prediction errors, indicating convergence. The effectiveness of the 
trained model is evaluated through metrics such as accuracy, precision, recall, or F1 score, depending on the 
specific nature of the predictive task. The goal is to ensure that the model generalizes well to new, unseen 
data, providing reliable predictions beyond the training set. In the context of EEG-based predictive modeling, 
this training phase holds the key to unlocking the model's ability to discern patterns associated with the 
target outcome, whether it be a clinical diagnosis or another relevant measure. The success of the subsequent 
application of the model hinges on the thoroughness and effectiveness of this training process. 

Hyperparameter Tuning: After the initial training phase, the fine-tuning of model hyperparameters 
becomes a critical step to optimize the model's performance and prevent overfitting. Hyperparameters, 
including learning rates, batch sizes, and network architectures, play a pivotal role in determining how the 
model learns from the data and generalizes to new, unseen instances. This fine-tuning process is typically 
carried out using a separate dataset known as the validation dataset. The validation dataset serves as an 
independent set of samples not used during the initial training phase. By evaluating the model's performance 
on this dataset, researchers or clinicians can gain insights into how well the model is likely to generalize to 
new, unseen data. The primary goal of hyperparameter tuning is to enhance the model's ability to capture 
complex patterns in the data while avoiding issues such as underfitting or overfitting. Learning rates, which 
determine the size of steps taken during parameter updates, are adjusted to strike a balance between 
convergence speed and stability. Batch sizes, specifying the number of samples processed in each iteration, 
are fine-tuned to optimize computational efficiency and model generalization. Network architectures, 
including the number and size of layers, activation functions, and other architectural choices, are modified to 
ensure the model complexity aligns with the task requirements. Through an iterative process of adjusting 
hyperparameters and evaluating performance on the validation dataset, researchers can identify 
configurations that lead to improved model generalization. Overfitting, where the model performs well on the 
training data but poorly on new data, is a particular concern. Fine-tuning ensures that the model is not overly 
specialized to the training dataset and can robustly handle a variety of inputs. Ultimately, the fine-tuning of 
hyperparameters is an essential practice in machine learning and deep learning, contributing to the 
development of models that not only perform well on the training data but also demonstrate reliable and 
consistent performance on new, unseen data. 

Evaluation: Following the training and fine-tuning phases, the model's performance is rigorously evaluated 
using a separate and independent dataset known as the test dataset. This evaluation provides a robust 
assessment of the model's ability to generalize to entirely new and unseen instances, offering insights into its 
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real-world applicability. In the context of mental disorder prediction, several key evaluation metrics are 
commonly employed: 

1. Accuracy: This metric quantifies the overall correctness of the model's predictions, measuring the 
ratio of correctly predicted instances to the total number of instances in the test dataset. While 
accuracy provides a general sense of model performance, it may not be sufficient when classes are 
imbalanced. 

2. Sensitivity (Recall): Sensitivity, also known as recall, gauges the model's ability to correctly identify 
instances of the positive class (e.g., individuals with a mental disorder) among all actual positive 
instances in the test dataset. It is particularly relevant when the consequences of false negatives are 
significant. 

3. Specificity: Specificity assesses the model's capacity to correctly identify instances of the negative 
class (e.g., individuals without a mental disorder) among all actual negative instances in the test 
dataset. It is crucial for scenarios where minimizing false positives is important. 

4. Area Under the ROC Curve (AUC-ROC): The ROC curve illustrates the trade-off between true 
positive rate (sensitivity) and false positive rate across different decision thresholds. The AUC-ROC 
quantifies the area under this curve and provides a comprehensive measure of the model's 
discriminative ability. A higher AUC-ROC suggests superior performance in distinguishing between 
positive and negative instances. 

These metrics collectively offer a nuanced understanding of the model's strengths and weaknesses. While 
accuracy provides an overall assessment, sensitivity and specificity offer insights into the model's 
performance with respect to each class. AUC-ROC provides a comprehensive evaluation of the model's ability 
to discriminate between classes at various decision thresholds. Successful performance across these metrics 
indicates that the predictive model has effectively learned patterns from the training data, generalized well to 
new instances in the test dataset, and holds promise for real-world applications in mental disorder 
prediction. 

Validation: The validation of the model's predictive capabilities involves a crucial step where its predictions 
are compared against clinical diagnoses or other established reference standards. This process is essential for 
assessing the model's real-world utility and reliability in practical applications. By aligning the model's 
outputs with known clinical diagnoses, researchers and clinicians can gauge the accuracy and effectiveness of 
the model in making predictions relevant to mental health. For instance, consider a traditional DNN model 
designed for mental health prediction based on EEG data, as illustrated in Figure 4. The model takes 
preprocessed EEG features as input and, after undergoing training, fine-tuning, and evaluation phases, 
generates predictions related to mental health conditions. The model's outputs are then compared with 
clinical diagnoses provided by experts or other well-established reference standards. This validation step 
serves as a critical checkpoint to ensure that the model's predictions align with ground truth information, 
verifying its capacity to provide meaningful insights into mental health conditions. The agreement between 
the model's predictions and clinical diagnoses substantiates the model's real-world applicability and 
potential as a valuable tool for supporting clinical decision-making. In Figure 4, various components of the 
DNN architecture may represent layers, nodes, or other architectural elements involved in the processing and 
transformation of EEG data. The complexity and depth of the model architecture are informed by the specific 
requirements of the predictive task and the characteristics of the EEG dataset.  In conclusion, the validation of 
the model against clinical diagnoses or reference standards is a pivotal step in ensuring the trustworthiness 
and effectiveness of the model in real-world scenarios, especially in the context of mental health prediction 
based on EEG data. This validation process contributes to the model's credibility and its potential to enhance 
diagnostic processes and inform treatment decisions. 
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Figure 4: EEG based Depression prediction using DNN  
 
5. Literature Survey 
In recent years, the utilization of deep learning techniques in conjunction with EEG signals for the diagnosis 
of depression has witnessed a significant surge. This section is primarily aimed at conducting a systematic 
literature review (SLR) that focuses on papers dedicated to the application of deep learning for the detection 
or prediction of depression using EEG data.  
 
5.1 Deep learning methods for depression detection using EEG signals 
 
This subsection discusses the notable methods for depression detection using EEG signals.  
 
Sharma et al. [13] introduced the DepHNN method for depression diagnosis, combining CNN and LSTM for 
EEG signal analysis. They applied Independent Components Analysis and Fast Fourier Transform for data 
quality and timefrequency extraction. Model optimization showed that reducing LSTM layers and increasing 
fully connected layers improved performance. The CNN transforms EEG data initially, and the LSTM block 
retains information, while fully connected layers aid in automatic depression detection. The Hybrid 6layer 
CNNLSTM model reduces time and complexity but faces challenges of overfitting and a small dataset. 
 
Seal et al. [14] introduced DeprNet, an 18-layer CNN framework for EEG data. They employed ICA to remove 
artifacts and three filtering techniques to eliminate various types of interference. The input data was 
structured as a 2D matrix, processed through layers including convolution, batch normalization, maxpooling, 
and fully connected layers, ending with a softmax layer for classification. DeprNet used short 4second EEG 
inputs from 19 channels, proving effective for practical applications with higher accuracy compared to other 
models. However, implementing this method in clinical settings may pose challenges due to its complexity 
and layer count. Additionally, the study highlighted differences in how depression affects tasks in the left and 
right brain hemispheres. 
 
Saeedi et. al [15] used GPDC and DDTF along with deep learning methods to detect brain connectivity 
through EEG signals. These methods were employed to analyze connections between EEG channels and 
transform 1D EEG signals into 2D images for deep learning classifiers. They tested five different deep learning 
algorithms, with the 1D CNNLSTM combinations showing the best performance in terms of accuracy and 
sensitivity. The 2DCNNLSTM approach, although faster and employing more parameters may filter out some 
temporal information. This research offers insights into deep learning algorithms and effective connectivity 
methods for EEG analysis, utilizing both temporal and spatial information. However, the study is limited by a 
small dataset and offers potential for further exploration of feature and parameter techniques to enhance 
accuracy.  
 
Khan et al. [16] introduced a novel depression diagnosis model using a three dimensional (3DCNN) with 
connectivity in the default mode network (DMN) region of the brain, estimated from 19 channel EEG 
recordings. They used EEGLAB software to remove artifacts such as eye blinks and muscle movements, 
employing the Artifact Subspace Reconstruction (ASR) technique. The study involved 2second EEG segments 
for effective connectivity estimation using Partial Directed Coherence (PDC). After extracting DMN 
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connections, the 3DCNN model with three convolutional layers, batch normalization layers, activation layers, 
and a fully connected layer was built. Overfitting is a potential concern, and a larger dataset is needed to 
thoroughly evaluate this unique approach's performance and address any limitations before further 
validation and improvement. 
 

Table 2: Comparative summary of recent methods 

Study Model/Method 
Preprocessing and Data 

Treatment Key Findings and Limitations 

Sharma et al. 
[13] DepHNN  

 ICA for artifact removal  FFT for 
time frequency information 
extraction  Varying LSTM and 
fully connected layers for 
optimization 

 Reduction in LSTM layers 
combined with more fully 
connected layers resulted in 
improved model execution time 
and lower loss.  Limitation of a 
small input dataset 

Seal et al. [14] DeprNet  

ICA for artifact removal  Various 
filters to remove interference  
EEG data organized as 2D matrix  
Utilized deep learning with 
notable accuracy improvement 

 Technology complexity may pose 
challenges in clinical settings  
Limited dataset size for rigorous 
evaluation 

Saeedi et al. [15] 
Deep Learning with 
EEG Connectivity 
Methods 

 Utilized GPDC and DDTF for 
connectivity  Converted EEG 
signals into 2D images  Compared 
different deep learning algorithms 

 1D CNNLSTM outperformed other 
models in accuracy and sensitivity  
2D CNNLSTM may lose temporal 
information 

Khan et al. [16] 3DCNN within the 
DMN Region 

 EEG signal preprocessing with 
EEGLAB and (ASR) Utilized PDC  
3DCNN model with convolution 
and LSTM layers   

 Risk of overfitting  Requires a 
larger dataset for robust validation 

Qayyum et al. 
[17] 

IDCNNGRU and 
IDCNNLSTM 

Combined CNN and LSTM 
networks  Used classic machine 
learning models for prediction  
Tested LSTM and GRU units 

 GRU performed better than LSTM 
for brief sequences  Need for 
further research on segmentation, 
dataset size, and feature extraction 

Thoduparambil 
et al. [18] 

CNNLSTM Model 

 FASTER method for artifact 
removal and preprocessing  
Combined CNN, LSTM, and Flatten 
layers  Focused on EEG data from 
the right hemisphere 

 Right hemisphere EEG signals had 
a greater impact on diagnostic tests  
Need for a larger dataset to address 
overfitting 

Kang et al. [19] 
2D CNN with EC 
and EO Data 

 Notch filter for power line 
interference  Lowpass filter to 
remove eye blink noise  EEG data 
divided into frequency ranges  2D 
CNN model with 11 layers 

 Achieved higher accuracy than 
other models with the same dataset  
Limited data hinders 
generalizability 

 

Duan et al. [20] 
EEG Patterns in 
MDD Patients 

 ICA and FIR filter for 
preprocessing  FFT for Theta, 
Beta, and Alpha frequency bands  
Structural and connectivity 
feature extraction 

 Identified structural and 
connectivity alterations in MDD 
patients  Limited dataset size 

 
 

 
 

  
 

Table Continued... 
 



www.ijiccs.in        47 
 

 
Saeedi et al. [21] 

Feature Extraction, 
Selection, 
Classification 

DWT for preprocessing  Feature 
extraction from five frequency 
bands  Genetic algorithm for 
feature selection  Machine 
learning and deep learning 
models 

 Deep learning with nonlinear 
features outperformed  Need for 
further improvement 

Y. Xie et al. [22] 
CNN with Functional 
Connectivity 

 Preprocessing to clean EEG 
signals  PLI for functional 
connectivity  CNN2 model and 
different combinations for 
analysis 

 MobileNet and brain networks 
showed promising results  
Potential overfitting with CNN2 
model 

X. Zhang et al. [23] 
1D CNN with 
Demographic 
Attention 

 Kalman filtering and DWT for 
preprocessing  1DCNN for 
feature extraction  Use of 
demographic data  Evaluation of 
demographic integration 

 Demographic consideration 
improved prediction  Need for 
more comprehensive data 

C. Uyulan et al. [24] 
1DCNN and 
1DCNNLSTM with 
MSEC 

 MSEC for preprocessing and 
artifact removal  EEG data 
segmentation  Comparison of 
1DCNN and 1DCNNLSTM for 
depression detection 

 MSEC improved noise correction  
Limitations due to a small 
dataset and short segmentation 
time 

Mahato et al. [27] Deep Learning and 
Ensemble Models 

 Feature extraction from EEG 
data  Linear and nonlinear 
features  PCA for dimensionality 
reduction  ICA for artifact 
removal 

 Combining linear and nonlinear 
features with certain classifiers 
yielded high accuracy  Further 
data and study required 

X. Li et al. [28] 
Ensemble Learning 
with Temporal, 
Spectral, Spatial 

 Feature extraction using AR 
model and Hjorth algorithms  
Transformation of EEG signals 
into images  VGGstyle CNN 
models   

 Alpha frequency band showed 
high predictive accuracy  
Challenges with the AEP method 

Acharya et al. [29] 
CNN and Deep 
Neural Network 
Techniques 

 Noise removal and bandpass 
filtering in preprocessing  
Feature extraction with CNN  
Comparison of models for 
depression detection 

 Right hemisphere signals 
showed better performance  
Complexity of the model 
architecture 

W. Mao et al. [30] 
Deep Learning with 
Temporal and 
Spatial Analysis 

 Segmentation and noise 
reduction of EEG signals  Power 
spectral density extraction  
Transformation into image 
matrices  Use of multiple deep 
learning models 

 Focus on Alpha frequency band 
and spatialtemporal features  
Limitations include a small 
dataset and potential overfitting 

Cai et al. [31] 
Combination of 
Deep Learning and 
Machine Learning 

 Wavelet transform for noise 
removal  Extraction of linear and 
nonlinear features  Combination 
of DBN with features for 
depression detection 

 Beta wave power was found to 
enhance classification accuracy  
Need for more data and 
reduction of DBN complexity 

 
Qayyum et al. [17] introduced two deep neural network models, IDCNNGRU and IDCNNLSTM, to analyze 
EEG data from two datasets related to eye open (EO) and eye closed (EC) conditions. These models utilized 19 
EEG channels divided into 1second time frames. The IDCNN (1D CNN) with three convolutional layers, two 
maxpooling layers, and two dropout layers was used for feature extraction from EEG signals. Sequential 



www.ijiccs.in        48 
 

learning with LSTM or GRU networks was employed to capture temporal dependencies in the data. The final 
dense layer's extracted features were used as inputs for a classification layer with a sigmoid function for 
binary classification. The study considered various training hyperparameters like learning rates, optimizers, 
and loss functions for model optimization. GRU outperformed LSTM due to its suitability for short sequences 
and lower training parameters and memory requirements. However, the study highlighted the need for 
further research into aspects like time window segmentation, dataset size, and the specific features being 
extracted, suggesting room for further optimization and refinement in this field of study. 
 
Thoduparambil et al.'s [18] research utilized a robust 12layer CNNLSTM model for depression 
identification using EEG data. The EEG data underwent two preprocessing steps, initially removing artifacts 
with the FASTER method, and then addressing offset effects and amplitude scaling issues with the same 
method. The model comprised three main parts: a classification segment, LSTM units for memory and 
sequential learning, and a CNN. The first part featured three CNN layers and three MaxPooling1D layers for 
extracting essential EEG data features. The second part included two LSTM layers for identifying distinct EEG 
data patterns and maintaining their temporal order. Two fully connected layers, a dropout layer, and a flatten 
layer were designed for classification. The Flatten layer was crucial in converting the output of the LSTM 
layers into a feature vector. Interestingly, the study found that the right hemisphere's EEG signals had a more 
significant impact on diagnostic results than the left hemisphere's signals. However, the study recognized 
limitations, including the need for a larger dataset to enhance model accuracy and robustness, concerns about 
overfitting, exploration of more advanced feature extraction and analysis techniques, and the need for a more 
comprehensive justification of the dataset used. 
 
Kang et al. [19] developed a two-dimensional convolutional layer-based model using EEG signals from both 
eye-closed (EC) and eye-opened (EO) states. They started by removing power line interference with a 50 Hz 
notch filter after data collection. The EC dataset underwent artifact removal to eliminate eye blink and muscle 
movement noise, achieved through a low pass filter removing frequencies above 32 Hz. Following 
preprocessing, signals were decomposed into Delta, Theta, Alpha, and Beta frequency ranges. The suggested 
model featured 11 layers, including a (CNN with two Conv2D layers, ReLU activation, Max-pooling layers, and 
a dropout layer. The final element was an output layer with a single dense layer and ReLU activation. 
Additionally, a fully connected layer included two dense layers and a dropout layer. The model's performance 
was assessed and validated using tenfold cross validation, demonstrating higher accuracy compared to other 
models using the same dataset. However, the study pointed out a limitation due to insufficient data, 
emphasizing the need for a larger dataset to enhance the model's generalizability and robustness. 
 
Duan et al. [20] conducted a study on Major Depressive Disorder (MDD) patients, analyzing EEG patterns. 
They used preprocessing techniques, including ICA and a FIR filter, to remove unwanted signals and visual 
aberrations from the EEG data. They extracted Theta, Beta, and Alpha frequency bands using the (FFT 
technique and computed interhemispheric asymmetry and cross-correlation values. These derived data were 
used to investigate structural and connectivity alterations. The study generated three feature matrices, 
including single-feature matrices for each frequency band and a mixed feature matrix, to understand the 
impact of depression on MDD patients. 
 
Saeedi et al. [21] conducted research to predict outcomes in a three-step process: feature extraction, feature 
selection, and classification. They used Discrete Wavelet Transform (DWT) for preprocessing to remove 
artifacts based on specific thresholds and extracted five major EEG frequency bands. Nonlinear features were 
derived using sample entropy and estimate entropy on wavelet packet coefficients. Feature selection was 
performed using a genetic algorithm (GA) to reduce feature dimensionality. For classifying depression cases, 
they employed K-nearest neighbors (KNN), SVM, and a deep learning approach called the multilayer 
perceptron (MLP). Notably, the MLP model combined with nonlinear features achieved higher accuracy than 
linear features in deep learning. Among the linear features, the Gamma power band demonstrated 
particularly excellent accuracy. While the study aimed to use different EEG data features for improved 
prediction, further enhancement of these parameters is needed for better results. 
 
Y. Xie et al. [22] developed a CNN model that incorporated functional connectivity within brain networks in 
their study. They started with EEG signal preprocessing, removing artifacts. They constructed a 31x31 
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adjacency matrix using the Phase Lag Index (PLI) approach, reflecting functional connectivity within the 
Delta, Alpha, Beta, Theta, and Gamma frequency ranges. The study considered a brain network as a graph 
with nodes representing brain regions recording EEG data and edges representing connections between 
these nodes. Input data for the brain network was created by assessing the strength of connections between 
nodes using the PLI approach. They built CNN2, a simple deep learning model with one convolutional layer 
and two pooling layers. The study explored six models by combining CNN2, DBN, and LDA algorithms with 
brain networks and Prefrontal Lateralization techniques. The results favored CNN2 and brain networks as the 
most promising among these models. It's important to note that using a simple CNN model posed the risk of 
overfitting the classification result, and improving accuracy could be achieved by adding more data or using 
tools like LSTM. 
 
X. Zhang et. al [23] tested two models for predicting MDD using 1D CNN with and without a demographic 
attention mechanism. They aimed to assess how integrating demographic and EEG data affected prediction 
accuracy. The data was preprocessed using Kalman filtering and DWT to remove noise. EEG data were 
divided into non-overlapping 4-second time windows from 40-second segments. Demographic data was 
converted into a 1D format using One Hot Encoding and normalization. The 1D CNN model extracted spatial-
temporal information, and an attention mechanism indirectly updated it with demographic information. The 
final classification result was obtained using the softmax function with a fully connected layer. The results 
showed that the CNN model with demographic consideration outperformed the one without it. DEEPDREAM 
was used to create artificial EEG signals, revealing that Beta frequency bands were the primary distinction 
between the generated signals. This research successfully utilized demographic data to achieve good 
diagnostic accuracy. However, it's important to acknowledge limitations, such as the need for more extensive 
data and the potential for overfitting, and conduct a more comprehensive analysis of the integration and 
impact of demographic data. 
 
C. Uyulan et al. [24] presented three CNN-based models: ResNet50, MobileNet, and Inceptionv3, combined 
with advanced computational neuroscience techniques. These models were applied to EEG recordings from 
both the left and right hemispheres during eye-closed states. Preprocessing involved removing artifacts from 
eye and muscle activities using the wavelet transform method and applying a 50 Hz notch filter to reduce 
power line interference. Further noise removal included the use of bandstop filters, FastICA method, and a 
Butterworth bandpass filter to extract Delta, Theta, Beta, and Alpha frequency bands. The Parks-McClellan 
optimal FIR filter algorithm minimized error in passbands and stopbands. The output signals were 
transformed into 2D EEG image matrices for input into the CNN structures. ResNet50 addressed gradient 
vanishing issues with its 22-layer residual learning capabilities. MobileNet leveraged depthwise and 
separable convolutions, enhancing performance. Inceptionv3, with its ability to prevent information loss, was 
also used. MobileNet achieved the highest accuracy in hemispheric classification, while ResNet50 performed 
best in frequency band-based classification. The proposed models introduced innovation by integrating CNN-
based techniques, but their complexity might limit clinical application. Further evaluation with a larger 
dataset is needed to confirm the attained accuracy. 
 
Z. Wan et al. [25] utilized a model called HybridEEGNet, which is essentially a CNN with a strong emphasis 
on feature analysis, to predict Major Depressive Disorder (MDD). Their approach involved using two types of 
convolutional filters to capture synchronous and regional EEG signal properties for in-depth analysis. The 
analysis process included creating feature matrices using the deep dreaming algorithm and then using the 
FFT technique to analyze these matrices. Their model consisted of 21 layers, including convolutional, max-
pooling, fully connected, and concatenation layers, along with a softmax layer for classification. The FFT 
analysis revealed that specific features, particularly variations in amplitude ranges and spatial patterns 
within the Alpha frequency band, contained crucial information about depressive cases. The study 
highlighted the importance of the 4-10 Hz frequency band as a significant low-frequency range for diagnostic 
purposes and the critical role of Theta and Alpha rhythms in identifying depression with notable 
performance. Despite these findings, the study acknowledged limitations such as the scarcity of adequate 
data, which raised concerns about the validity of their results. They also emphasized the need to review the 
feature extraction process and related accomplishments for further improvements. 
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Mumtaj et al.'s [26] used two deep learning models: the One-Dimensional (1DCNN) and 1DCNN with LSTM. 
The 1DCNN consisted of 31D Convolutional layers, two pooling layers, one dropout layer, and three 
additional layers, designed to learn and transform temporal information. The second model had three blocks, 
each containing one 1D Convolutional layer, one pooling layer, and one dropout layer, followed by two LSTM 
layers. These models aimed to analyze EEG data for their study. They employed the Multiple Source Eye 
Correction (MSEC) approach to preprocess the raw input data, removing artifacts caused by muscle activity, 
heartbeats, and eye blinks. The EEG signals were segmented into 1-second time windows, and the MSEC 
approach effectively corrected noise originating from eye blinks and muscular activity during EEG recordings. 
Interestingly, they found that signals recorded with eyes open (EO) resulted in better categorization results 
compared to signals recorded with eyes closed (EC). However, the study acknowledged limitations, including 
a small dataset and the use of a relatively short time window for segmentation. While they claimed that a 1-
second window size offered optimal performance, further empirical data are needed to support this assertion. 
 
Mahato et al.’s [27] effectively recognized depression by combining four deep learning classifiers: the Multi-
Layered Perceptron Neural Network (MLPNN), the Radial Basis Function Network (RBFN), the Linear 
Discriminant Analysis (LDA), and the Quadratic Discriminant Analysis. They extracted linear and nonlinear 
features from EEG data, including power in Alpha, Beta, Delta, and Gamma frequency bands and hemisphere 
asymmetry in Alpha, Beta, Delta, and Gamma. Principal Component Analysis (PCA) was used to manage the 
dimensionality of nonlinear features, and Independent Component Analysis (ICA) was employed to remove 
artifacts from the data. The study found that combining linear and nonlinear features with the MLPNN or 
RBFN classifiers achieved the highest accuracy in depression diagnosis. Additionally, the use of the LDA 
classifier with two specific nonlinear features, Wavelet Entropy (WE) and Relative Wavelet Energy (RWE), 
produced the second-highest accuracy, surpassing the performance of any classifier when coupled with linear 
features. The study also highlighted the potential importance of Theta power in achieving high accuracy in 
detecting depression. Further research is needed to validate and generalize these findings, especially 
regarding the role of Theta power in depression diagnosis. 
 
X. Li et al. [28] focused on predicting outcomes by combining ensemble learning and deep learning methods. 
They conducted a comprehensive analysis of EEG signals, considering temporal, spectral, and spatial aspects. 
They used the autoregressive model and Hjorth algorithms with varying time windows to extract features 
such as power spectral density and activity. They also transformed EEG signals into images using the auditory 
evoked potentials (AEP) method, incorporating spatial information. Two VGG-style architectures were used, 
culminating in a dense layer and a softmax layer for classification. The study revealed that the Alpha 
frequency band outperformed Beta and Theta frequencies in predictive accuracy. Features played a pivotal 
role in achieving high accuracy. However, the use of the AEP method presented challenges related to 
distance-based projection, potentially overlooking non-distance-related aspects. Improving the management 
of noisy signals from EEG inputs is crucial for enhancing overall performance. 
 
Acharya et al. [29] introduced CNN and deep neural network techniques for depression identification. Their 
13-layer CNN model comprised five convolutional layers, five pooling layers, and three fully connected layers. 
Features from EEG data were extracted by the convolutional layers, and the pooling layers reduced the size of 
feature maps. The fully connected layers established connections between neurons in different layers. 
Sensitivity and accuracy were better when using signals from the right hemisphere. However, the model may 
be prone to inaccurate predictions due to the limited data and its complex architecture. 
 
W. Mao et. al [30] emphasized preprocessing of raw EEG signals to create sample input data for deep 
learning algorithms. The EEG signals were segmented into 270-second intervals, noise was removed, and 
Electrooculography (EOG) interference was minimized. They extracted Theta, Alpha, and Beta frequency 
bands as the primary steps in data preparation. The AutoRegress model (AR model) was used to compute 
electrode power and segment it into 0.5-second windows. Power spectrum density was used while 
preserving the temporal properties of the EEG data. They employed two projection models, one based on 
distance and the other not, to maintain spatial information. Among the deep learning models, CNN, Temporal 
Convolution, MAX, and LSTM were used for classification, with the LSTM model performing less effectively 
than the others when working with non distance mapping frames. Input data limitations and relatively low 
accuracy suggest potential for improvement through parameter configuration optimization. 
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Cai et al. [31] conducted a study for the diagnosis of depression, combining deep learning and machine 
learning algorithms. They gathered EEG data using electrodes on the frontal scalp. Preprocessing included 
removing noisy signals using the wavelet transform method, and linear features like Alpha, Theta, Beta, and 
Gamma frequencies were extracted after noise reduction. After normalizing the data, they created a feature 
matrix for deep learning models. A combination of Deep Belief Network (DBN) and the retrieved features 
outperformed other approaches. The study revealed the potential for increasing classification accuracy using 
beta wave power but emphasized the need for more data to achieve a more solid degree of accuracy. The 
complexity of the massive DBN architecture was also acknowledged as a potential challenge. 
 
5.2 Limitations of State of the art Methods 
It is worth acknowledging that depression is frequently diagnosed at later stages, primarily due to a 
multitude of factors. This delay in diagnosis poses significant challenges to effective treatment, and in certain 
instances, the condition becomes extremely challenging to cure. Given the multifaceted implications of 
depression and the obstacles in its early detection and treatment, it becomes all the more imperative to 
advocate for increased dedication of time and resources to the research and prediction of this perilous 
ailment. The accuracy of the earlier methods is also limited. 
 
6.  Future Directions 

Integration of Multimodal Data: Explore the integration of EEG data with other modalities such as fMRI, 
eye-tracking, or physiological signals to enhance the overall accuracy and reliability of mental disorder 
detection using Deep Neural Networks (DNNs). Combining multiple sources of information may provide a 
more comprehensive understanding of the complex neural processes associated with mental disorders. 

Longitudinal Studies and Temporal Dynamics: Conduct longitudinal studies to capture the temporal 
dynamics of EEG signals over extended periods. Investigate how DNNs can effectively model changes in EEG 
patterns over time, providing insights into the progression and dynamic nature of mental disorders. This 
approach could contribute to more personalized and adaptive diagnostic models. 

Transfer Learning Across Disorders: Explore the potential of transfer learning techniques within DNNs to 
leverage knowledge gained from one mental disorder for the detection of others. This approach could 
enhance the efficiency of model training and potentially contribute to a broader and more generalized 
application of EEG-based mental disorder detection. 

Explainability and Interpretability: Focus on improving the explainability and interpretability of DNN 
models for EEG-based mental disorder detection. Understanding the features and patterns that contribute to 
model predictions is crucial for gaining trust from clinicians and ensuring the clinical relevance of the 
developed models. 

Real-Time Monitoring and Intervention: Investigate the feasibility of real-time EEG-based mental disorder 
detection using DNNs. Develop models that can continuously monitor EEG signals for early signs of mental 
health issues, allowing for timely intervention and personalized treatment strategies. This could be 
particularly valuable for conditions with acute episodes or rapidly changing states. 

7. Conclusion 

In conclusion, this paper has provided a thorough examination of the application of deep neural network 
(DNN) approaches in predictive modeling of mental disorders through the analysis of 
electroencephalography (EEG) signals. The review underscores the growing significance of integrating 
advanced computational methods, particularly DNNs, in addressing the complex challenges associated with 
mental health research. By synthesizing findings from various studies, we have illuminated the diverse 
methodologies employed and the distinctive contributions of different DNN architectures to the field. The 
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insights gleaned from this review emphasize the potential of predictive modeling using EEG data for 
enhancing our understanding of mental disorders. The ability to leverage DNNs in this context holds promise 
for early diagnosis and the development of personalized treatment strategies, thereby advancing the 
prospects for improved patient outcomes. Nevertheless, it is crucial to acknowledge the limitations and 
challenges inherent in these methodologies, including issues related to data variability, interpretability, and 
generalizability. Looking ahead, the identified gaps and challenges present opportunities for future research 
to refine and innovate DNN approaches in the context of mental health.  
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