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Abstract: 

This research paper focuses on the implementation of an autonomous parking system in Unity’s simulated 
environment. The primary objective is to enable safe parking in designated slots without collisions. The 
implementation of this simulated model in Unity is discussed, highlighting the key classes and components 
responsible for agent behavior, car spawning, and control. The study leverages Generative Adversarial 
Imitation Learning (GAIL) to refine the agent’s performance by incorporating expert demonstrations. Metrics 
such as Stimulative Reward, Episode Length, and GAIL loss are employed to evaluate the system’s 
performance during training. Additionally, grid-search optimization is utilized to fine-tune the Proximal 
Policy Optimization (PPO) algorithm’s hyperparameters. This research contributes to the development of 
efficient autonomous parking systems and offers insights into PPO hyperparameter optimization using grid 
search. The simulation framework supports the evaluation of autonomous parking performance under 
diverse scenarios, promoting a better understanding of the system’s capabilities and limitations. By 
comparing the residual energy between normal nodes and energy harvested nodes, the effectiveness of the 
solar energy harvesting approach can be assessed. 

Keywords: autonomous parking, Unity simulation, reinforcement learning, extrinsic rewards, behavior-
driven approaches, Generative Adversarial Imitation Learning, Proximal Policy Optimization, grid-search 
optimization

1. Introduction 
 

Parking in urban areas is a challenging process due to high vehicle density, incurring energy costs, 
contributing to the environmental footprint, and hampering productivity. Governments implement policies to 
discourage vehicle ownership and promote public transportation. Finding suitable parking spaces involves 
considering factors like proximity and layout. Drivers must navigate safely and choose from various parking 
slot orientations. The increase in vehicle numbers has elevated the risk of accidents, resulting in substantial 
losses and damages. To address human errors and improve safety, autonomous driving technology has 
emerged as a solution. Autonomous driving involves the use of computer systems to control different aspects 
of a vehicle without human intervention. An essential component of autonomous driving is automated 
parking, which enables a vehicle to navigate within a parking lot without the need for human control. This 
functionality relies on two interconnected systems: the smart parking lot and the smart car. The smart 
parking lot system plays a crucial role in guiding vehicles to their designated parking spots and optimizing 
the parking journey for drivers. Meanwhile, the smart car utilizes parking position data to detect obstacles 
and navigate the parking lot while avoiding barriers and obstructions. Both systems heavily rely on intelligent 
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learning systems, such as artificial intelligence and machine learning, to perform their tasks efficiently and 
make informed decisions. 
 
2. Literature Survey  

 
Autonomous driving technology has made significant advancements in recent years, aiming to enhance road 
safety, reduce traffic congestion, and improve the overall driving experience. This study builds upon several 
influential papers that have contributed to the field. Notably, in [1], an actor-critic (A3C-PPO) system for 
autonomous parking is introduced. Manual adjustments of hyperparameters, such as tuning the mini-batch 
size and fine-tuning the Generalized Advantage Estimate (GAE) factor, were performed to optimize the 
agent’s final rewards. The study by [2] provides an effective method for autonomous rear parking (ARP) 
using reinforcement learning, path planning, and path following. This approach demonstrates effectiveness in 
reducing path following errors, holding promise for real-world applications across different industries. In [3], 
the authors present an approach that incorporates an imaginative model for predicting outcomes before 
parking. They employ an enhanced rapid-exploring random tree (RRT) for planning efficient trajectories from 
a given starting point to a parking location. The study results indicate that, compared to traditional RRT, the 
proposed approach performs better and provides superior results. The paper [4] focuses on the non-linearity 
of vehicle dynamics limitations and introduces the Deep Proximal Policy Optimization with Imitation 
Learning (DPPO-IL) approach, employing the Proximal Policy Optimization algorithm. This framework 
enhances parking spot exploration, path planning, and path tracking while utilizing intrinsic reward signals. It 
combines imitation learning with deep reinforcement learning for improved performance. In [5], a new 
approach is introduced that utilizes reinforcement learning for perpendicular parking. This enables the 
vehicle to learn optimal steering angles for various parking scenarios, achieve human-like intelligent parking, 
and address challenges such as path tracking errors and network convergence. The project [6] focuses on 
creating an autonomous car parking environment for multi-agent reinforcement learning. The author applies 
both Q-Learning and IPPO, examining competitive and collaborative behaviors among agents. PPO and grid-
search parameter tuning are also applied, with the results showing a high success rate of at least 99.5% for 
parking with up to 7 agents. 
 
A. Objective 
The goal of this research in autonomous parking systems is to develop technology that enables automobiles 
to park themselves without human assistance. This will be achieved by proposing a combination of the Deep 
Reinforcement Learning algorithm and Imitation Learning. Additionally, the study aims to optimize the 
algorithm's hyperparameters using the grid-search technique. Ultimately, the objective is to revolutionize the 
parking experience, making it safer, more efficient, and more convenient for all. 
 
B. Scenario 
The study concentrates on a simulated vertical parking environment with two obstacles near the parking 
spot. The coordinate system of the parking environment is established with the center of the parking space as 
the origin, as illustrated in Figure 1. 

 

Figure 1: Scenario for autonomous vehicle parking [3] 
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3. Theoretical Background 
 
A. Reinforcement learning overview  
Artificial intelligence (AI) plays a vital role in various aspects of our lives and society, being integrated into 
electronic devices for automation and serving as a fundamental component of utility software. Among the 
machine learning techniques, reinforcement learning has gained significant popularity. It involves learning 
through trial and error, accumulating experiences, and adjusting the model’s behavior based on rewards 
received for each experience. Rewards indicate the effectiveness of chosen actions in the current 
environment. Due to intrinsic control faults, traditional approaches based on path planning and path tracking 
may produce suboptimal parking orientations. There are methods that use "human-like" parking and 
reinforcement learning to address this problem. This end-to-end approach avoids errors brought on by path 
tracking by directly mapping the environment to actions. Additionally, it enables continuous learning and 
experience accumulation from multiple parking attempts, allowing the system to improve over time [7]. 
 
B. Main algorithm of the reinforcement learning 
Reinforcement learning (RL) algorithms operate based on a reward system, where agents are rewarded for 
correct actions and penalized for incorrect ones. Unlike supervised learning, RL doesn’t rely on labeled data, 
and it differs from unsupervised learning, which is focused on pattern finding. In RL, agents interact with an 
environment, taking actions to transition between states, as shown in Figure 2. Feedback or rewards may be 
delayed, and the current action influences future data. The agent’s state guides its decision-making, and its 
history comprises observations, actions, and rewards. In fully observable environments, the agent’s state 
aligns with the environment’s state, modeled using a Markov Decision Process (MDP). In partially observable 
environments, a Partially Observable Markov Decision Process (POMDP) is used, constructing the state from 
history and assumptions about the environment’s state [8]. An agent in reinforcement learning is made up of 
a model, a value function, and a policy. The agent’s behavior is determined by the policy, which maps actions 
from states. Based on expected future rewards, the value function assesses the quality of states or actions. 
The model represents the agent’s understanding of the environment and is used for simulating potential 
scenarios. Together, these components enable the agent to learn and make better decisions [2, 9]. 

 

 
Figure 2: Reinforcement Learning cycle [10] 

 
 
C. Reinforcement learning environment  
 
Observation Space 
The reinforcement learning environment’s observation space contains observable parameters. The heading 
angle (θe) and the position errors (Xe and Ye) of the vehicle’s ego pose in relation to the target pose make up 
the observation space in this situation. Additionally, the readings from the LiDAR sensor are observed to 
determine if the vehicle is parked correctly or not. 
 
State Space The vector between the autonomous car and its environment, in this case the parking lot, is 
represented by the state space. The state space can be defined as a combination of the vehicle’s position 



www.ijiccs.in        4 
 

errors (Xe and Ye) with respect to the target position, the distance error (d) between the vehicle and the 
target spot, and the orientation (O) of the vehicle relative to the target pose [11] [12]. 
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Action Space The collection of activities that the autonomous car is capable of performing in the parking lot 
environment is represented by the action space. The action signal specifically consists of distinct steering 
angles with step intervals of 15 degrees and a range of ±45 [1]. 

D. Deep reinforcement learning 
In real-world applications, learning in complex environments with large state and action spaces can be 
challenging due to memory and computational limitations. Discretization of these spaces can be a potential 
solution, but it may lead to either limited performance with large discretization steps or a large state-action 
space with impractical sampling requirements with small discretization steps. To address this issue, function 
approximation techniques are actively researched in the field of reinforcement learning. Function 
approximation allows for generalization across states and actions, enabling the storage and retrieval of 
estimates using approximator functions. Neural networks, particularly deep neural networks, have also been 
widely used for function approximation, giving rise to the paradigm of deep reinforcement learning (DRL) [6] 
[12]. 
 

 
Figure 3: Deep reinforcement learning process [12] 

 
E. Variations of deep reinforcement learning 
Deep reinforcement learning is a popular approach for training self-driving vehicles without relying on 
manually labeled data. Two main categories of reinforcement learning methods are used for controlling 
autonomous vehicles: value based, policy-based, and actor-critic methods [12]. Value-based methods, such as 
deep Q-learning (DQN), aim to estimate the value of each possible action in a given state. These methods use a 
deep neural network to approximate the Q-value function, which represents the expected cumulative reward 
for taking a particular action in a specific state. The agent then selects actions based on the highest estimated 
Q values. Value-based methods are effective for problems with discrete action spaces, such as choosing 
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between predefined maneuvers like turning left, turning right, or going straight. However, they may struggle 
with problems that involve continuous action spaces, such as controlling the precise steering angle or the 
vehicle’s velocity [13]. By computing the gradient of the predicted reward with respect to the policy’s 
parameters, policy-based approaches directly optimize the policy. These techniques can handle continuous 
action spaces with high dimensions, but they may suffer from excessive variance in policy gradient estimates, 
which can lead to unstable training. However, improvements in algorithms and methodologies, such as 
variance reduction techniques, have helped to address these difficulties and increased the dependability of 
policy-based solutions. Policy-based methods directly optimize the policy itself by calculating the gradient of 
the expected reward with respect to the policy’s parameters. These methods can handle high dimensional 
continuous action spaces but may suffer from high variance in policy gradient estimation, which can make 
training unstable. However, advancements in algorithms and techniques, such as variance reduction methods, 
have helped mitigate these issues and make policy-based methods more reliable [13]. Actor-critic methods, 
on the other hand, combine elements of both value-based and policy-based approaches. In actorcritic 
methods, there are two components: the actor and the critic. The actor is responsible for selecting actions 
based on the current policy, while the critic evaluates the chosen actions by estimating their expected 
rewards. By leveraging the critic’s evaluations, the actor can update its policy to improve decision-making. 
This combination of value estimation and policy optimization allows actor-critic methods to handle both 
discrete and continuous action spaces. Popular actor-critic algorithms include Proximal Policy Optimization 
(PPO), Trust Region Policy Optimization (TRPO), and Actor-Critic with Experience Replay (ACER).  
In this project, considering the limitations of value-based methods for continuous action spaces, the idea is to 
apply an actor-critic method PPO. This approach combines the benefits of both value-based and policy-based 
methods, leading to more stable training and improved control of autonomous vehicle parking. 
 
F. Markov process 
Reinforcement learning is a decision-making framework where an agent interacts with an environment. This 
process can be described using the Markov decision process (MDP) notation, which consists of a set of states 
(S), a set of actions (A), state transition probabilities (P), and a reward function (R). The set of states (S) 
represents the possible configurations or situations in which the agent can find itself. The set of actions (A) 
represents the available choices for the agent in a given state, determining how it interacts with the 
environment. The state transition probabilities (P) define the likelihood of transitioning from one state to 
another based on the current state and action. The reward function (R) provides a scalar feedback signal to 
the agent, indicating the desirability or quality of its actions. In reinforcement learning, episodes are 
simulated for a bounded number of time steps (τ). Each episode starts with the agent in an initial state (s0) 
and ends at the last time step (t = τ -1). The dynamics of an MDP specify that the agent, at each time step, is in 
a state (s), takes an action (a), transitions to a new state (s′) with a certain probability (P), and receives a 
reward (r) from the environment. The agent’s goal is to learn a policy that maximizes the cumulative reward 
over time by exploring the environment, making decisions, and receiving feedback [6] 
 
G. Imitation Learning 
Imitation learning (IL) is a method where a policy is learned directly from expert demonstrations, without 
accessing the expert policy itself. The agent is provided with a dataset (D) containing expert trajectories, 
obtained from an expert policy interacting with the Markov decision process (MDP). The objective is to learn 
the best policy (πIL) using this dataset without requiring access to the expert policy (πexp). 
In IL, there are two well-known algorithms: Behavior cloning and Generative Adversarial Imitation Learning 
(GAIL). Behavior cloning minimizes the loss function between the agent and the expert policy by using 
negative log likelihood, without collecting samples from the environment. On the other hand, GAIL minimizes 
the loss function using cross-entropy loss and collects samples from the environment to improve its policy 
[10]. 
 
 
H. Imitation Learning process 
Imitation learning serves as an alternative to reinforcement learning, particularly when the aim is to make 
the AI behave more like a human rather than pursuing machine-like perfection. The framework involves a 
Teacher agent performing the task and a Student agent imitating the Teacher. The learning process starts 
with the Teacher playing the task for a specific duration, varying based on the task’s difficulty. The Teacher 
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can be a neural network, a human, or a deterministic algorithm, with human Teachers often yielding the best 
results. Meanwhile, the Student agent observes the actions of the Teacher and attempts to imitate its 
behavior. Imitation learning allows the Student agent to learn by observing and mimicking the Teacher’s 
actions, enabling the acquisition of similar behaviors and decision-making processes. This approach enables 
the development of AI systems that exhibit human-like characteristics and behaviors, making them suitable 
for applications where human-like performance is desirable [9]. 
 
I. Behaviour Cloning 
Behaviour Cloning (BC) is a form of imitation learning that treats the problem as a supervised learning task. It 
does not require any interaction with the Markov decision process (MDP). In BC, each expert state-action pair 
is treated as a training example for a regression problem, where the state is the input and the action is the 
output. The policy is learned by minimizing the supervised training loss, which aims to make the agent’s 
predicted actions match the expert actions.  
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(2)  

where   represents the policy that is being optimized,  BCJ   is the objective function, N represents the 

number of data points in the dataset, ks  represents the state of the environment at the k th  data point, ka  

represents the action taken by the expert at the k th  data point and  log k ka s  is the logarithm of the 

probability of taking action ka  in-state ks  according to the policy  .  

 
J. Generative Adversarial Imitation Learning  
Generative Adversarial Imitation Learning (GAIL) consists of two networks: the generator and the 
discriminator D . The generator produces a distribution of state-action pairs, while the discriminator, a 

secondary neural network, generates a distribution from the expert demonstration samples p. GAIL aims to 
acquire near-optimal behaviours directly from expert demonstrations and self-exploration, without requiring 
the design of task-specific reward functions. By encouraging the generator to confuse the discriminator, GAIL 
enables the agent to mimic a policy that exhibits human-like behaviour by performing similar states and 
actions as demonstrated by the expert. GAIL optimizes the min-max cross-entropy objective, as presented in 
Equation below.  

      min max , log 1 , log ,eV D s a D s a    
                                                                           (3)  

There is a generative model G and a discriminative classifier D competing against each other. The objective of 
D is to differentiate between trajectories generated by G and those generated by the expert E. The success of 
G is determined by its ability to generate trajectories that are indistinguishable from the expert’s trajectories. 
To achieve this, the formula that should be maximized by D is given by: 

    log , log 1 ,
E

D s a D s a                                                                                                                        (4) 

  in this formula takes a trajectory D composed of state s and its corresponding action a as input. The 

 log ,D s a  function returns a continuous value ranging from 0 to 1. A higher value indicates that the input 

trajectory resembles an expert’s trajectory. By maximizing this value, D can provide a reward signal to train G 
to generate trajectories similar to those of the expert.  This gradient update allows G to adjust its parameters 
θ in the direction that increases the likelihood of generating trajectories that are perceived as expert-like by D 
[12]. 
 
K. Proximal Policy Optimization 
PPO is a widely used actorcritic algorithm in the field of deep reinforcement learning. It has gained 
recognition for its simplicity of implementation and competitive performance compared to other state-of-
theart approaches. PPO has become a popular choice due to its effectiveness and ease of use.  Unlike 
supervised learning, where defining a cost function and applying gradient descent often leads to good results, 
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reinforcement learning is more complex and requires careful tuning. RL algorithms can be challenging to 
debug and often require significant effort to achieve satisfactory performance.  PPO addresses these 
challenges by offering a balanced approach. It aims to strike a balance between implementation simplicity, 
sample efficiency, and ease of tuning. By computing updates at each step that minimize the cost function 
while ensuring limited deviation from the previous policy, PPO efficiently explores the policy space and finds 
optimal policies.  PPO has been successfully applied in various domains, including automated parking, where 
it demonstrated robust performance against noise and emphasized smooth trajectory planning. While some 
limitations may exist in specific experimental setups, PPO has proven to be a reliable and effective algorithm 
in many applications.  PPO falls under the category of policy-gradient methods, specifically actor-critic 
methods. In these methods, the policy is parameterized by weights θ and optimized using stochastic gradient 
ascent on a loss function L (θ). Additionally, the agent’s value function, which approximates the Q-values in Q-
Learning, is simultaneously approximated. The actor approximates the policy, determining which action to 
take, while the critic approximates the value function, providing feedback on the quality of the chosen action 
and guiding adjustments.  The PPO algorithm updates the weights θ based on the loss function using a 
learning rate hyperparameter α and a random batch of trajectories from an experience buffer. This process 
shown in Figure 7 is repeated for a specified number of epochs, with hyperparameters such as buffer size, 
batch size, and network architectures (layers and hidden units) influencing the training dynamics. PPO also 
introduces a minimum size for trajectories to be added to the buffer, known as the time horizon [13].  
 

 

Figure 4: The actor-critic architecture [14] 

4. Methodology 
 
In this study, the experiments were conducted using reinforcement learning techniques, specifically focusing 
on the Unity game engine and the ML-Agents reinforcement learning platform. The chosen algorithm for 
reinforcement learning was PPO.  PPO was selected as the reinforcement learning algorithm due to its 
advantages as a policy-based approach compared to value-based algorithms like Q-Learning. Given the wide 
range of possible actions for the learning agent, using a value-based algorithm would require significant 
memory resources. The agent’s input consists off field-of-view images captured from both the front and rear 
in-vehicle cameras. The network model utilized in the study is illustrated in Figure 5, incorporating three 
convolutional layers. The performance evaluation of the learning process is based on measures such as 
cumulative reward and entropy [15].  
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Figure 5: Deep Neural Network Model [16] 

A. Reinforcement Learning  
This project involves an agent, represented by a car, operating in an environment with specific actions and 
receiving rewards based on its actions as shown in Figure 6. The agent’s objective is to find a parking spot. It 
follows a reinforcement learning cycle, where it takes actions, receives rewards or punishments, and 
transitions to the next state. The agent learns over time which actions lead to positive rewards and avoids 
actions that result in punishments. The cycle continues until the agent either reaches its goal (a parking spot) 
or reaches a predetermined step limit. Positive rewards are given when the agent successfully reaches the 
parking spot, while negative rewards are assigned for collisions with other parked cars.  
 

 

Figure 6: Agent-Environment Interaction cycle [15] 

B. GAN Policy 
The architecture of the GAN policy is shown in Figure 7.  The simplified process includes the following steps: 
  

1. Train the discriminator D using expert and generated trajectories.  
2. Update the policy G with a gradient.  

Expert trajectories can be either generated from a human expert, an algorithm or a policy that has already 
mastered the target task [16].  
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Figure 7: GAN policy architecture [16] 

 Proximal policy optimization architecture  

In Figure 8, the actor represents the policy network responsible for determining the policy function π(a/s), 
while the critic evaluates the chosen policy by estimating the state-value function Q (s,a).  Using information 
from the energy market, the PPO algorithm develops the theta and varpimodel parameters for the actor and 
critic networks. The current policy π is used to sample finite-length trajectories D  from the training data 
during each training iteration (k), as opposed to investigating the full episode. Based on the existing policy 
for each trajectory, the simulation generates bidding decisions (a) for the energy and frequency regulatory 
markets. As a result, utilizing the reward function, each time-step (t) experiences a profit or loss {r(t)} 
depending on the state {s(t)} . The value function calculates the trajectory’s expected discounted reward.  
 
C. Unity 

 The study’s learning environment was created using the Unity game engine, in particular the Unity Machine 
Learning Agents Toolkit (ML-Agents). Unity is known for creating interactive 2D and 3D games. The 
reinforcement learning (RL) community favours ML-Agents because of its visualizations and support for 
concurrent agent training. ML-Agents provide tools for real-time 2D/3D Markov Decision Process (MDP) 
simulations with varying agent numbers. It implements RL algorithms (e.g., single/multi-agent PPO) and 
integrates with Tensor Board for visual analysis. Its Python Low-Level API enables researchers to interface 
with Unity using custom RL algorithms [9, 13].  
 
D. Visualization  
Tensor Board is the main tool used for data collection in order to monitor crucial metrics like average 
rewards and policy loss. Additional metrics are also written to files using the built-in CSV module. 
 
E. Metrics  
The selected metrics for evaluating performance are:  
Total Reward:  this metric measure the cumulative rewards collected by the agent throughout the training 
and testing phases. An increase in the total reward indicates an overall improvement in the agent’s policy. 
Success Rate: the success rate metric calculates the average number of times the agent successfully 
completes the task, which in this case involves parking the vehicle correctly in the designated lane without 
collisions. A higher success rate indicates better performance.  



www.ijiccs.in        10 
 

Estimating the distance of driving length: Estimating the distance of driving length is depicted in Figure 9 
is another important metric to consider. This metric provides information about the total distance covered 
by the agent during the training and testing phases. It can be useful for evaluating the efficiency and 
effectiveness of the agent’s navigation and decision-making capabilities [16]. 
In addition to the aforementioned metrics, monitoring the vehicle velocity is indeed an important factor. By 
tracking the velocity of the ego vehicle, we can assess its speed and ensure that it remains within the desired 
range of behaviour. Deviations from the expected velocity range can indicate issues such as overly cautious 
or aggressive driving behaviour, which may require adjustments to the agent’s policy or parameters. 
Monitoring and analysing the vehicle velocity can help optimize the agent’s performance and ensure safe and 
efficient driving.  
 

 

Figure 8: The proximal policy optimization algorithm’s high-level diagram [17] 

 

 
Figure 9: Estimating of path distance [16] 
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5.  Implementation and Results 
 
A.  Environment  
The assets used in the environment include car models that were downloaded from the Unity Asset Store. 
The wheel colliders were specifically added to the wheels of the car. These wheel colliders enable the car to 
have realistic driving capabilities, allowing it to interact with the environment more accurately. These car 
models consist of a body and four wheels with cylinders. The specific car models used are depicted in Figure 
10.  

 

Figure 10: Assets used for simulation [18] 

B. Parking lot  
The environment was built by creating a parking lot (shown in Figure 11), which is represented as a 
rectangular-shaped plane with walls on the sides. The parking simulation consists of other cars and a 
designated parking slot highlighted in red. The objective for the cab is to locate a suitable parking slot 
highlighted as green and safely park there without causing any damage to other vehicles. The reward function 
provides positive or negative rewards based on the cab’s actions. If the cab collides with other cars, a highly 
negative reward is given, emphasizing the importance of avoiding collisions. Similarly, hitting random 
obstacles results in a slightly negative reward. On the other hand, successfully parking the cab in the 
designated slot leads to a high positive reward. The environment is based on [19]. 

 

 

Figure 11: Parking lot simulation 

C. Components of parking lot  
Car Agent: Controls the autonomous vehicle’s actions (acceleration, braking, steering) using algorithms.  
Max Step: Limits Car Agent’s actions to avoid indefinite tasks, setting max instructions per episode.  
Car Spawner: Generates interacting vehicles, specifying initial positions and parameters.  
Spawn Radius: Defines area for generating interacting vehicles; reset if outside radius.  
Target: Represents parking destination for Car Agent, guiding actions.  
Box Collider and Rigid Body: Rigid body simulates car physics (e.g., acceleration, collision response); 
Colliders detect collisions with objects.  
Sensors: Cameras capture visual data for input. Parameters like Width, Height, grayscale, and compression 
affect resolution and format. Sensors detect objects within 10 meters, aiding safe navigation and parking.  
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Figure 12: Pictured View from Cameras 

In this project, the spawned cab is equipped with eight cameras, view of which depicted in Figure 12. These 
sensors are responsible for measuring distances to nearby obstacles and providing this information to the 
underlying AI system. The AI system utilizes reinforcement learning techniques and a reward function to 
guide the cab’s actions. The integration of multiple sensors can overcome limitations and enhance the overall 
performance of the system. With the sensor information, the cab must learn to navigate the environment, 
avoid obstacles, and autonomously locate the appropriate parking slot. The reinforcement learning algorithm 
optimizes the reward function, enabling the cab to improve its performance over time.  
 
D. Behaviour options 
Behaviour Name: Defines hyperparameters for system behaviour, distinguishing configurations.  
Vector Observations: Sets array size for environment inputs, like camera data.  
Vector Action: Specifies agent actions—float array for continuous or int array for discrete.  
Model: Trained model for agent decisions during non-training phases.  
Behaviour Type: Sets agent behavior—Default for training and inference, heuristic for manual testing. 
 Decision Requester: Controls action update rate from learning model.  
Decision Period: Sets interval for action requests—1 for direct script actions. 
 
E.  Training process  
To enhance the training process, two additional components were incorporated: extrinsic rewards and 
curiosity-driven exploration. After that, GAIL was added to learn the parking from recorded demo files. 
Extrinsic Reward 
An extrinsic reward system is used to guide the agent’s behavior in the parking lot. The agent receives 
rewards based on its performance in completing the parking task. The extrinsic rewards serve as a measure 
of success and encourage the agent to learn optimal parking strategies.  
Behaviour Driven  
Behaviour-driven approaches involve shaping the agent’s behavior by incorporating specific rules or expert 
knowledge into the learning process. 
 
Training with Generative Adversarial Imitation Learning (GAIL) 
To provide the AI with an understanding of the environment from the early stages, 100 demonstration 
instances were recorded. These demonstrations are stored in the demo’s folder. By incorporating these 
demos into the training process, the AI can learn from the expertise demonstrated in the recordings. The path 
to the recorded model is added to the PPO hyperparameters during training, allowing the AI to leverage the 
knowledge gained from the demonstrations. The combination of extrinsic reward, behaviour-driven 
approaches, and GAIL was used to enhance the training and performance of an autonomous parking system. 
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By providing extrinsic rewards, the agent receives explicit feedback on its parking performance, enabling it to 
learn the desired behaviour more efficiently. Incorporating behaviour-driven techniques allows for the 
incorporation of specific parking rules and expert knowledge, further guiding the agent’s actions toward safe 
and efficient parking. Additionally, GAIL can be used to leverage expert demonstrations, training the agent to 
imitate the behaviour of skilled human drivers. This combination can lead to improved parking performance, 
smoother manoeuvres, and better adherence to parking regulations. 
 
F. Vehicle model  
During the parking manoeuvre, the vehicle operates at a relatively low velocity. To facilitate motion planning, 
a kinematic vehicle model, as depicted in Figure 13, is utilized. This model allows us to represent the vehicle’s 
posture in the parking coordinate system using variables (x, y, θ), where (x, y) represents the vehicle’s 
position, and (θ), denotes its orientation. Φ stands for the steering angle of the front wheel, and v  stands for 
the velocity at the center of the rear axle.  
 
G. Kinematic vehicle model  
In the low-speed motion scenario, it can be assumed that the car’s wheels only roll without any slipping, and 
the lateral dynamics of the tires can be disregarded. Under these assumptions, a car kinematics state change, 
including angle and position will be done using the formula below [15].  
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Figure 13: Kinematic model of vehicle [15] 

H. Reward function 
The reward function in this experiment is designed to evaluate the agent’s actions at each step. Negative 
rewards are given to actions that the agent should avoid, such as collisions, with the accumulation of negative 
rewards reflecting their impact on safety. The agent receives a sparse reward only when the distance 
between the agent and the target decreases by 10%. To gradually communicate progress, the agent is given a 
modest positive Dense Reward and Checkpoints reward at each stage. When the agent completes 
checkpoints, which act as intermediate goals, they also get an extra reward. The cumulative reward is the sum 
of the benefits the agent has received for each episode [20, 21]. This approach encourages the model to strive 
for higher rewards from successful parking. 
 
I. Metrics 

I. Cumulative Reward: 
The cumulative reward chart typically shows the total reward accumulated by the agent over time or 
episodes. As the agent investigates the world and picks up new skills, the chart may initially display a random 
or low reward. As the agent investigates the world and picks up new skills, the chart may initially display a 
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random or low reward. As the agent learns and improves its policy, the chart should generally show an 
upward trend, indicating increasing rewards. 

II. Episode Length:  
The episode length chart illustrates the duration or length of each episode during training. At the beginning of 
training, the episode length may be relatively long as the agent explores and takes time to learn optimal 
actions. As the agent learns and becomes more efficient, the episode length should generally decrease.  

III. GAIL Loss:  
The GAIL loss chart represents the loss incurred during the training of the discriminator network in the GAIL 
algorithm. Initially, the loss may be high as the discriminator struggles to differentiate between expert and 
policy actions. As the discriminator learns, the loss should decrease, indicating an improvement in its ability 
to distinguish expert actions from policy actions.  

IV. Value Loss:  
The value loss chart shows the loss incurred during the training of the value function or value estimator.  

V. Pre-training Loss:  
The pre-training loss chart represents the loss incurred during the pre-training phase of the model.  

VI. Policy Loss: 
The policy loss chart shows the loss incurred during the training of the policy network.  For the value, pre-
training, and policy loss at the beginning of training, the loss may be high, but as the model improves, the loss 
should decrease, indicating a better alignment between predicted values and observed rewards.  
The metrics collected after training are shown in Figure 14.   
 

 

Figure 14: Metrics Visualized with Tensor Board 

 
J. Implementation in Unity 
The class diagram for the proposed environment is shown in Figure 15. 
 Description of some of the classes:  

1. The MoveToGoalAgent class represents an agent that learns to navigate a car to reach a goal in a 
Unity ML-Agents environment. It uses reinforcement learning to train the agent’s behavior.  

2. The CarStripSpawner class is responsible for spawning a strip of cars in a Unity scene.  
3. The CarSpawnerclass is responsible for spawning individual cars in a Unity scene. 
4. The Car class represents a car in the Unity scene. It typically includes a car model, colliders, and other 

components. The exact functionality and behavior of the car differ based on the particular 
implementation.  

5. The CarController class is responsible for controlling the movement and behavior of a car in a Unity 
scene. It typically includes functions for steering, accelerating, braking, and applying physics forces to 
the car’s rigidbody component. The specific implementation of the car controller can vary depending 
on the desired car physics and behavior. 



www.ijiccs.in        15 
 

6. The SimpleCarController class is responsible for controlling a car in a simple driving simulation. It 
provides functionality for steering and applying motor torque to the wheels of the car. 
 

 
 

Figure 15: Class Diagram of classes used for simulation 
 

K. Optimization of PPOs hyperparameters  
The main hyperparameters used are shown in Table 1. There are a lot of recommendations on how to 
improve the PPO algorithm by adjusting the hyperparameters [8] [5].  Grid searching represents one of the 
potential techniques for optimizing a set of hyperparameters in PPO. It involves sampling a subset of values 
for each parameter, and then every combination of these values is evaluated. By exhaustively trying all 
combinations, the best-performing configuration can be identified. This method allows for systematic 
exploration of the hyperparameter space to find the optimal values for PPO training. This method will be used 
to adjust parameters for the PPO [19].  
The algorithm steps are described below and shown in Figure 16:  

1. Generate all possible combinations of the parameters being grid-searched.  
2. For each combination, create a separate PPO YAML configuration file by injecting the parameter 

values into a base YAML file.  
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3. Create individual .slurm files for each parameter combination. These files are used to call the 
”magnets-learn” command with the corresponding YAML files.  

4. Execute the jobs on the compute cluster of the department. This is done by using the ”srun” 
command with each of the .slurm files created in the previous step.  

5. Once the training is complete, automatically run ”analysis.py” on all the trained models. This is 
achieved by executing ”analysis.py” after ”magnets-learn” in the .slurm files.  

6. The result of the analysis can be imported to a spreadsheet and further visualized to gain 
comprehensive insights.  

7. To compare the output models with the grid-searched parameters, step 5 passes each grid-searched 
parameter to ”analysis.py”. This ensures that the parameter values appear as columns in the 
resulting CSV output.  

Table 1: PPO Hyperparameters 

Parameter Value Explanation 
Trainer_type PPO Type of trainer (PPO) 
Batch_size 1024 Experiences per batch 
Buffer_size 5120 Experience replay buffer size 
Learning_rate 0.00035 Neural network learning rate 
beta 0.0025 Entropy regularization strength 
epsilon 0.3 PPO clipping parameter 
lambd 0.95 Generalized advantage estimation parameter 
Num_epoch 5 Optimization epochs per batch 
normalize TRUE Input data normalization 
Hidden_units 264 Hidden units per layer 
Num_layers 3 Number of layers 
gamma(extrinsic) 0.95 Extrinsic reward discount factor 
strength (extrinsic) 0.99 Extrinsic reward strength 
strength (GAIL) 0.3 GAIL reward strength  

 

6.  Conclusions 
 

The research implemented an autonomous parking system in Unity’s simulated environment. The goal was 
safe parking in a designated green slot without collisions. To enhance training, extrinsic rewards, behavior-
driven methods, and GAIL were used. Extrinsic rewards guided agent behavior. Positive rewards for 
successful parking, negative for collisions. Agent aimed to maximize cumulative reward by learning parking 
strategies. This approach has driven the agent to maximize cumulative rewards and develop advanced 
parking strategies. Behavior-driven methods shaped agent behavior with rules and expert knowledge, 
improving adherence to parking regulations. The introduction of GAIL has significantly improved the 
system’s performance. Leveraging 100 expert demonstrations, the AI system learned from these recordings, 
resulting in enhanced parking precision, maneuvering, and rule adherence. During the process of training and 
simulation, metrics like Stimulative Reward, Episode Length, and GAIL loss evaluated system performance 
during training. Additionally, using the grid-search method, various value combinations were evaluated. It led 
to faster optimization of PPO algorithm hyperparameters. As a result of this research, the autonomous 
parking system was implemented in a simulated environment using the Unity engine. The objective for the 
autonomous vehicle, represented by the car agent, was to locate a suitable parking slot highlighted in green 
and safely park there without causing any damage to other vehicles. To summarize, the research contributes 
to efficient autonomous parking. Insights on optimizing Proximal Policy Optimization parameters using grid 
search. The proposed simulation framework supports exploring various aspects of autonomous parking 
performance under diverse scenarios. 
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Figure 16: Proposed algorithm for PPO’s hyperparameters improvement 
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