
www.ijiccs.in 1

International Journal of Intelligent Communication and Computer Science
Vol. 1, No. 2, 2023, Pages 1-18.

Autonomous parking in the perpendicular parking lot, using
the Deep reinforcement algorithm: Proximal Policy
Optimization with Generative Adversarial Imitation
Learning and Behavior Cloning

Iryna Tyshchenko 1 and Mohammed Nazeh Alimam1

University of Europe for Applied Sciences, Berlin, GERMANY
Email: tyschenk20@gmail.com
Received: 30 Sep 2023, Revised: 15 Oct 2023, Accepted: 29 Oct 2023

Abstract:

This research paper focuses on the implementation of an autonomous parking system in Unity’s simulated
environment. The primary objective is to enable safe parking in designated slots without collisions. The
implementation of this simulated model in Unity is discussed, highlighting the key classes and components
responsible for agent behavior, car spawning, and control. The study leverages Generative Adversarial
Imitation Learning (GAIL) to refine the agent’s performance by incorporating expert demonstrations. Metrics
such as Stimulative Reward, Episode Length, and GAIL loss are employed to evaluate the system’s
performance during training. Additionally, grid-search optimization is utilized to fine-tune the Proximal
Policy Optimization (PPO) algorithm’s hyperparameters. This research contributes to the development of
efficient autonomous parking systems and offers insights into PPO hyperparameter optimization using grid
search. The simulation framework supports the evaluation of autonomous parking performance under
diverse scenarios, promoting a better understanding of the system’s capabilities and limitations. By
comparing the residual energy between normal nodes and energy harvested nodes, the effectiveness of the
solar energy harvesting approach can be assessed.

Keywords: autonomous parking, Unity simulation, reinforcement learning, extrinsic rewards, behavior-
driven approaches, Generative Adversarial Imitation Learning, Proximal Policy Optimization, grid-search
optimization

1. Introduction

Parking in urban areas is a challenging process due to high vehicle density, incurring energy costs,
contributing to the environmental footprint, and hampering productivity. Governments implement policies to
discourage vehicle ownership and promote public transportation. Finding suitable parking spaces involves
considering factors like proximity and layout. Drivers must navigate safely and choose from various parking
slot orientations. The increase in vehicle numbers has elevated the risk of accidents, resulting in substantial
losses and damages. To address human errors and improve safety, autonomous driving technology has
emerged as a solution. Autonomous driving involves the use of computer systems to control different aspects
of a vehicle without human intervention. An essential component of autonomous driving is automated
parking, which enables a vehicle to navigate within a parking lot without the need for human control. This
functionality relies on two interconnected systems: the smart parking lot and the smart car. The smart
parking lot system plays a crucial role in guiding vehicles to their designated parking spots and optimizing
the parking journey for drivers. Meanwhile, the smart car utilizes parking position data to detect obstacles
and navigate the parking lot while avoiding barriers and obstructions. Both systems heavily rely on intelligent

Research Paper

www.ijiccs.in 2

learning systems, such as artificial intelligence and machine learning, to perform their tasks efficiently and
make informed decisions.

2. Literature Survey

Autonomous driving technology has made significant advancements in recent years, aiming to enhance road
safety, reduce traffic congestion, and improve the overall driving experience. This study builds upon several
influential papers that have contributed to the field. Notably, in [1], an actor-critic (A3C-PPO) system for
autonomous parking is introduced. Manual adjustments of hyperparameters, such as tuning the mini-batch
size and fine-tuning the Generalized Advantage Estimate (GAE) factor, were performed to optimize the
agent’s final rewards. The study by [2] provides an effective method for autonomous rear parking (ARP)
using reinforcement learning, path planning, and path following. This approach demonstrates effectiveness in
reducing path following errors, holding promise for real-world applications across different industries. In [3],
the authors present an approach that incorporates an imaginative model for predicting outcomes before
parking. They employ an enhanced rapid-exploring random tree (RRT) for planning efficient trajectories from
a given starting point to a parking location. The study results indicate that, compared to traditional RRT, the
proposed approach performs better and provides superior results. The paper [4] focuses on the non-linearity
of vehicle dynamics limitations and introduces the Deep Proximal Policy Optimization with Imitation
Learning (DPPO-IL) approach, employing the Proximal Policy Optimization algorithm. This framework
enhances parking spot exploration, path planning, and path tracking while utilizing intrinsic reward signals. It
combines imitation learning with deep reinforcement learning for improved performance. In [5], a new
approach is introduced that utilizes reinforcement learning for perpendicular parking. This enables the
vehicle to learn optimal steering angles for various parking scenarios, achieve human-like intelligent parking,
and address challenges such as path tracking errors and network convergence. The project [6] focuses on
creating an autonomous car parking environment for multi-agent reinforcement learning. The author applies
both Q-Learning and IPPO, examining competitive and collaborative behaviors among agents. PPO and grid-
search parameter tuning are also applied, with the results showing a high success rate of at least 99.5% for
parking with up to 7 agents.

A. Objective
The goal of this research in autonomous parking systems is to develop technology that enables automobiles
to park themselves without human assistance. This will be achieved by proposing a combination of the Deep
Reinforcement Learning algorithm and Imitation Learning. Additionally, the study aims to optimize the
algorithm's hyperparameters using the grid-search technique. Ultimately, the objective is to revolutionize the
parking experience, making it safer, more efficient, and more convenient for all.

B. Scenario
The study concentrates on a simulated vertical parking environment with two obstacles near the parking
spot. The coordinate system of the parking environment is established with the center of the parking space as
the origin, as illustrated in Figure 1.

Figure 1: Scenario for autonomous vehicle parking [3]

www.ijiccs.in 3

3. Theoretical Background

A. Reinforcement learning overview
Artificial intelligence (AI) plays a vital role in various aspects of our lives and society, being integrated into
electronic devices for automation and serving as a fundamental component of utility software. Among the
machine learning techniques, reinforcement learning has gained significant popularity. It involves learning
through trial and error, accumulating experiences, and adjusting the model’s behavior based on rewards
received for each experience. Rewards indicate the effectiveness of chosen actions in the current
environment. Due to intrinsic control faults, traditional approaches based on path planning and path tracking
may produce suboptimal parking orientations. There are methods that use "human-like" parking and
reinforcement learning to address this problem. This end-to-end approach avoids errors brought on by path
tracking by directly mapping the environment to actions. Additionally, it enables continuous learning and
experience accumulation from multiple parking attempts, allowing the system to improve over time [7].

B. Main algorithm of the reinforcement learning
Reinforcement learning (RL) algorithms operate based on a reward system, where agents are rewarded for
correct actions and penalized for incorrect ones. Unlike supervised learning, RL doesn’t rely on labeled data,
and it differs from unsupervised learning, which is focused on pattern finding. In RL, agents interact with an
environment, taking actions to transition between states, as shown in Figure 2. Feedback or rewards may be
delayed, and the current action influences future data. The agent’s state guides its decision-making, and its
history comprises observations, actions, and rewards. In fully observable environments, the agent’s state
aligns with the environment’s state, modeled using a Markov Decision Process (MDP). In partially observable
environments, a Partially Observable Markov Decision Process (POMDP) is used, constructing the state from
history and assumptions about the environment’s state [8]. An agent in reinforcement learning is made up of
a model, a value function, and a policy. The agent’s behavior is determined by the policy, which maps actions
from states. Based on expected future rewards, the value function assesses the quality of states or actions.
The model represents the agent’s understanding of the environment and is used for simulating potential
scenarios. Together, these components enable the agent to learn and make better decisions [2, 9].

Figure 2: Reinforcement Learning cycle [10]

C. Reinforcement learning environment

Observation Space
The reinforcement learning environment’s observation space contains observable parameters. The heading
angle (θe) and the position errors (Xe and Ye) of the vehicle’s ego pose in relation to the target pose make up
the observation space in this situation. Additionally, the readings from the LiDAR sensor are observed to
determine if the vehicle is parked correctly or not.

State Space The vector between the autonomous car and its environment, in this case the parking lot, is
represented by the state space. The state space can be defined as a combination of the vehicle’s position

www.ijiccs.in 4

errors (Xe and Ye) with respect to the target position, the distance error (d) between the vehicle and the
target spot, and the orientation (O) of the vehicle relative to the target pose [11] [12].

e

e

e

X

Y

S

d

O

(1)

Action Space The collection of activities that the autonomous car is capable of performing in the parking lot
environment is represented by the action space. The action signal specifically consists of distinct steering
angles with step intervals of 15 degrees and a range of ±45 [1].

D. Deep reinforcement learning
In real-world applications, learning in complex environments with large state and action spaces can be
challenging due to memory and computational limitations. Discretization of these spaces can be a potential
solution, but it may lead to either limited performance with large discretization steps or a large state-action
space with impractical sampling requirements with small discretization steps. To address this issue, function
approximation techniques are actively researched in the field of reinforcement learning. Function
approximation allows for generalization across states and actions, enabling the storage and retrieval of
estimates using approximator functions. Neural networks, particularly deep neural networks, have also been
widely used for function approximation, giving rise to the paradigm of deep reinforcement learning (DRL) [6]
[12].

Figure 3: Deep reinforcement learning process [12]

E. Variations of deep reinforcement learning
Deep reinforcement learning is a popular approach for training self-driving vehicles without relying on
manually labeled data. Two main categories of reinforcement learning methods are used for controlling
autonomous vehicles: value based, policy-based, and actor-critic methods [12]. Value-based methods, such as
deep Q-learning (DQN), aim to estimate the value of each possible action in a given state. These methods use a
deep neural network to approximate the Q-value function, which represents the expected cumulative reward
for taking a particular action in a specific state. The agent then selects actions based on the highest estimated
Q values. Value-based methods are effective for problems with discrete action spaces, such as choosing

www.ijiccs.in 5

between predefined maneuvers like turning left, turning right, or going straight. However, they may struggle
with problems that involve continuous action spaces, such as controlling the precise steering angle or the
vehicle’s velocity [13]. By computing the gradient of the predicted reward with respect to the policy’s
parameters, policy-based approaches directly optimize the policy. These techniques can handle continuous
action spaces with high dimensions, but they may suffer from excessive variance in policy gradient estimates,
which can lead to unstable training. However, improvements in algorithms and methodologies, such as
variance reduction techniques, have helped to address these difficulties and increased the dependability of
policy-based solutions. Policy-based methods directly optimize the policy itself by calculating the gradient of
the expected reward with respect to the policy’s parameters. These methods can handle high dimensional
continuous action spaces but may suffer from high variance in policy gradient estimation, which can make
training unstable. However, advancements in algorithms and techniques, such as variance reduction methods,
have helped mitigate these issues and make policy-based methods more reliable [13]. Actor-critic methods,
on the other hand, combine elements of both value-based and policy-based approaches. In actorcritic
methods, there are two components: the actor and the critic. The actor is responsible for selecting actions
based on the current policy, while the critic evaluates the chosen actions by estimating their expected
rewards. By leveraging the critic’s evaluations, the actor can update its policy to improve decision-making.
This combination of value estimation and policy optimization allows actor-critic methods to handle both
discrete and continuous action spaces. Popular actor-critic algorithms include Proximal Policy Optimization
(PPO), Trust Region Policy Optimization (TRPO), and Actor-Critic with Experience Replay (ACER).
In this project, considering the limitations of value-based methods for continuous action spaces, the idea is to
apply an actor-critic method PPO. This approach combines the benefits of both value-based and policy-based
methods, leading to more stable training and improved control of autonomous vehicle parking.

F. Markov process
Reinforcement learning is a decision-making framework where an agent interacts with an environment. This
process can be described using the Markov decision process (MDP) notation, which consists of a set of states
(S), a set of actions (A), state transition probabilities (P), and a reward function (R). The set of states (S)
represents the possible configurations or situations in which the agent can find itself. The set of actions (A)
represents the available choices for the agent in a given state, determining how it interacts with the
environment. The state transition probabilities (P) define the likelihood of transitioning from one state to
another based on the current state and action. The reward function (R) provides a scalar feedback signal to
the agent, indicating the desirability or quality of its actions. In reinforcement learning, episodes are
simulated for a bounded number of time steps (τ). Each episode starts with the agent in an initial state (s0)
and ends at the last time step (t = τ -1). The dynamics of an MDP specify that the agent, at each time step, is in
a state (s), takes an action (a), transitions to a new state (s′) with a certain probability (P), and receives a
reward (r) from the environment. The agent’s goal is to learn a policy that maximizes the cumulative reward
over time by exploring the environment, making decisions, and receiving feedback [6]

G. Imitation Learning
Imitation learning (IL) is a method where a policy is learned directly from expert demonstrations, without
accessing the expert policy itself. The agent is provided with a dataset (D) containing expert trajectories,
obtained from an expert policy interacting with the Markov decision process (MDP). The objective is to learn
the best policy (πIL) using this dataset without requiring access to the expert policy (πexp).
In IL, there are two well-known algorithms: Behavior cloning and Generative Adversarial Imitation Learning
(GAIL). Behavior cloning minimizes the loss function between the agent and the expert policy by using
negative log likelihood, without collecting samples from the environment. On the other hand, GAIL minimizes
the loss function using cross-entropy loss and collects samples from the environment to improve its policy
[10].

H. Imitation Learning process
Imitation learning serves as an alternative to reinforcement learning, particularly when the aim is to make
the AI behave more like a human rather than pursuing machine-like perfection. The framework involves a
Teacher agent performing the task and a Student agent imitating the Teacher. The learning process starts
with the Teacher playing the task for a specific duration, varying based on the task’s difficulty. The Teacher

www.ijiccs.in 6

can be a neural network, a human, or a deterministic algorithm, with human Teachers often yielding the best
results. Meanwhile, the Student agent observes the actions of the Teacher and attempts to imitate its
behavior. Imitation learning allows the Student agent to learn by observing and mimicking the Teacher’s
actions, enabling the acquisition of similar behaviors and decision-making processes. This approach enables
the development of AI systems that exhibit human-like characteristics and behaviors, making them suitable
for applications where human-like performance is desirable [9].

I. Behaviour Cloning
Behaviour Cloning (BC) is a form of imitation learning that treats the problem as a supervised learning task. It
does not require any interaction with the Markov decision process (MDP). In BC, each expert state-action pair
is treated as a training example for a regression problem, where the state is the input and the action is the
output. The policy is learned by minimizing the supervised training loss, which aims to make the agent’s
predicted actions match the expert actions.

1

1
min log

N

BC k k
k

J a s
N

(2)

where represents the policy that is being optimized, BCJ is the objective function, N represents the

number of data points in the dataset, ks represents the state of the environment at the k th data point, ka

represents the action taken by the expert at the k th data point and log k ka s is the logarithm of the

probability of taking action ka in-state ks according to the policy .

J. Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning (GAIL) consists of two networks: the generator and the
discriminator D . The generator produces a distribution of state-action pairs, while the discriminator, a

secondary neural network, generates a distribution from the expert demonstration samples p. GAIL aims to
acquire near-optimal behaviours directly from expert demonstrations and self-exploration, without requiring
the design of task-specific reward functions. By encouraging the generator to confuse the discriminator, GAIL
enables the agent to mimic a policy that exhibits human-like behaviour by performing similar states and
actions as demonstrated by the expert. GAIL optimizes the min-max cross-entropy objective, as presented in
Equation below.

 min max , log 1 , log ,eV D s a D s a
 (3)

There is a generative model G and a discriminative classifier D competing against each other. The objective of
D is to differentiate between trajectories generated by G and those generated by the expert E. The success of
G is determined by its ability to generate trajectories that are indistinguishable from the expert’s trajectories.
To achieve this, the formula that should be maximized by D is given by:

 log , log 1 ,
E

D s a D s a (4)

 in this formula takes a trajectory D composed of state s and its corresponding action a as input. The

 log ,D s a function returns a continuous value ranging from 0 to 1. A higher value indicates that the input

trajectory resembles an expert’s trajectory. By maximizing this value, D can provide a reward signal to train G
to generate trajectories similar to those of the expert. This gradient update allows G to adjust its parameters
θ in the direction that increases the likelihood of generating trajectories that are perceived as expert-like by D
[12].

K. Proximal Policy Optimization
PPO is a widely used actorcritic algorithm in the field of deep reinforcement learning. It has gained
recognition for its simplicity of implementation and competitive performance compared to other state-of-
theart approaches. PPO has become a popular choice due to its effectiveness and ease of use. Unlike
supervised learning, where defining a cost function and applying gradient descent often leads to good results,

www.ijiccs.in 7

reinforcement learning is more complex and requires careful tuning. RL algorithms can be challenging to
debug and often require significant effort to achieve satisfactory performance. PPO addresses these
challenges by offering a balanced approach. It aims to strike a balance between implementation simplicity,
sample efficiency, and ease of tuning. By computing updates at each step that minimize the cost function
while ensuring limited deviation from the previous policy, PPO efficiently explores the policy space and finds
optimal policies. PPO has been successfully applied in various domains, including automated parking, where
it demonstrated robust performance against noise and emphasized smooth trajectory planning. While some
limitations may exist in specific experimental setups, PPO has proven to be a reliable and effective algorithm
in many applications. PPO falls under the category of policy-gradient methods, specifically actor-critic
methods. In these methods, the policy is parameterized by weights θ and optimized using stochastic gradient
ascent on a loss function L (θ). Additionally, the agent’s value function, which approximates the Q-values in Q-
Learning, is simultaneously approximated. The actor approximates the policy, determining which action to
take, while the critic approximates the value function, providing feedback on the quality of the chosen action
and guiding adjustments. The PPO algorithm updates the weights θ based on the loss function using a
learning rate hyperparameter α and a random batch of trajectories from an experience buffer. This process
shown in Figure 7 is repeated for a specified number of epochs, with hyperparameters such as buffer size,
batch size, and network architectures (layers and hidden units) influencing the training dynamics. PPO also
introduces a minimum size for trajectories to be added to the buffer, known as the time horizon [13].

Figure 4: The actor-critic architecture [14]

4. Methodology

In this study, the experiments were conducted using reinforcement learning techniques, specifically focusing
on the Unity game engine and the ML-Agents reinforcement learning platform. The chosen algorithm for
reinforcement learning was PPO. PPO was selected as the reinforcement learning algorithm due to its
advantages as a policy-based approach compared to value-based algorithms like Q-Learning. Given the wide
range of possible actions for the learning agent, using a value-based algorithm would require significant
memory resources. The agent’s input consists off field-of-view images captured from both the front and rear
in-vehicle cameras. The network model utilized in the study is illustrated in Figure 5, incorporating three
convolutional layers. The performance evaluation of the learning process is based on measures such as
cumulative reward and entropy [15].

www.ijiccs.in 8

Figure 5: Deep Neural Network Model [16]

A. Reinforcement Learning
This project involves an agent, represented by a car, operating in an environment with specific actions and
receiving rewards based on its actions as shown in Figure 6. The agent’s objective is to find a parking spot. It
follows a reinforcement learning cycle, where it takes actions, receives rewards or punishments, and
transitions to the next state. The agent learns over time which actions lead to positive rewards and avoids
actions that result in punishments. The cycle continues until the agent either reaches its goal (a parking spot)
or reaches a predetermined step limit. Positive rewards are given when the agent successfully reaches the
parking spot, while negative rewards are assigned for collisions with other parked cars.

Figure 6: Agent-Environment Interaction cycle [15]

B. GAN Policy
The architecture of the GAN policy is shown in Figure 7. The simplified process includes the following steps:

1. Train the discriminator D using expert and generated trajectories.
2. Update the policy G with a gradient.

Expert trajectories can be either generated from a human expert, an algorithm or a policy that has already
mastered the target task [16].

www.ijiccs.in 9

Figure 7: GAN policy architecture [16]

 Proximal policy optimization architecture

In Figure 8, the actor represents the policy network responsible for determining the policy function π(a/s),
while the critic evaluates the chosen policy by estimating the state-value function Q (s,a). Using information
from the energy market, the PPO algorithm develops the theta and varpimodel parameters for the actor and
critic networks. The current policy π is used to sample finite-length trajectories D from the training data
during each training iteration (k), as opposed to investigating the full episode. Based on the existing policy
for each trajectory, the simulation generates bidding decisions (a) for the energy and frequency regulatory
markets. As a result, utilizing the reward function, each time-step (t) experiences a profit or loss {r(t)}
depending on the state {s(t)} . The value function calculates the trajectory’s expected discounted reward.

C. Unity

 The study’s learning environment was created using the Unity game engine, in particular the Unity Machine
Learning Agents Toolkit (ML-Agents). Unity is known for creating interactive 2D and 3D games. The
reinforcement learning (RL) community favours ML-Agents because of its visualizations and support for
concurrent agent training. ML-Agents provide tools for real-time 2D/3D Markov Decision Process (MDP)
simulations with varying agent numbers. It implements RL algorithms (e.g., single/multi-agent PPO) and
integrates with Tensor Board for visual analysis. Its Python Low-Level API enables researchers to interface
with Unity using custom RL algorithms [9, 13].

D. Visualization
Tensor Board is the main tool used for data collection in order to monitor crucial metrics like average
rewards and policy loss. Additional metrics are also written to files using the built-in CSV module.

E. Metrics
The selected metrics for evaluating performance are:
Total Reward: this metric measure the cumulative rewards collected by the agent throughout the training
and testing phases. An increase in the total reward indicates an overall improvement in the agent’s policy.
Success Rate: the success rate metric calculates the average number of times the agent successfully
completes the task, which in this case involves parking the vehicle correctly in the designated lane without
collisions. A higher success rate indicates better performance.

www.ijiccs.in 10

Estimating the distance of driving length: Estimating the distance of driving length is depicted in Figure 9
is another important metric to consider. This metric provides information about the total distance covered
by the agent during the training and testing phases. It can be useful for evaluating the efficiency and
effectiveness of the agent’s navigation and decision-making capabilities [16].
In addition to the aforementioned metrics, monitoring the vehicle velocity is indeed an important factor. By
tracking the velocity of the ego vehicle, we can assess its speed and ensure that it remains within the desired
range of behaviour. Deviations from the expected velocity range can indicate issues such as overly cautious
or aggressive driving behaviour, which may require adjustments to the agent’s policy or parameters.
Monitoring and analysing the vehicle velocity can help optimize the agent’s performance and ensure safe and
efficient driving.

Figure 8: The proximal policy optimization algorithm’s high-level diagram [17]

Figure 9: Estimating of path distance [16]

www.ijiccs.in 11

5. Implementation and Results

A. Environment
The assets used in the environment include car models that were downloaded from the Unity Asset Store.
The wheel colliders were specifically added to the wheels of the car. These wheel colliders enable the car to
have realistic driving capabilities, allowing it to interact with the environment more accurately. These car
models consist of a body and four wheels with cylinders. The specific car models used are depicted in Figure
10.

Figure 10: Assets used for simulation [18]

B. Parking lot
The environment was built by creating a parking lot (shown in Figure 11), which is represented as a
rectangular-shaped plane with walls on the sides. The parking simulation consists of other cars and a
designated parking slot highlighted in red. The objective for the cab is to locate a suitable parking slot
highlighted as green and safely park there without causing any damage to other vehicles. The reward function
provides positive or negative rewards based on the cab’s actions. If the cab collides with other cars, a highly
negative reward is given, emphasizing the importance of avoiding collisions. Similarly, hitting random
obstacles results in a slightly negative reward. On the other hand, successfully parking the cab in the
designated slot leads to a high positive reward. The environment is based on [19].

Figure 11: Parking lot simulation

C. Components of parking lot
Car Agent: Controls the autonomous vehicle’s actions (acceleration, braking, steering) using algorithms.
Max Step: Limits Car Agent’s actions to avoid indefinite tasks, setting max instructions per episode.
Car Spawner: Generates interacting vehicles, specifying initial positions and parameters.
Spawn Radius: Defines area for generating interacting vehicles; reset if outside radius.
Target: Represents parking destination for Car Agent, guiding actions.
Box Collider and Rigid Body: Rigid body simulates car physics (e.g., acceleration, collision response);
Colliders detect collisions with objects.
Sensors: Cameras capture visual data for input. Parameters like Width, Height, grayscale, and compression
affect resolution and format. Sensors detect objects within 10 meters, aiding safe navigation and parking.

www.ijiccs.in 12

Figure 12: Pictured View from Cameras

In this project, the spawned cab is equipped with eight cameras, view of which depicted in Figure 12. These
sensors are responsible for measuring distances to nearby obstacles and providing this information to the
underlying AI system. The AI system utilizes reinforcement learning techniques and a reward function to
guide the cab’s actions. The integration of multiple sensors can overcome limitations and enhance the overall
performance of the system. With the sensor information, the cab must learn to navigate the environment,
avoid obstacles, and autonomously locate the appropriate parking slot. The reinforcement learning algorithm
optimizes the reward function, enabling the cab to improve its performance over time.

D. Behaviour options
Behaviour Name: Defines hyperparameters for system behaviour, distinguishing configurations.
Vector Observations: Sets array size for environment inputs, like camera data.
Vector Action: Specifies agent actions—float array for continuous or int array for discrete.
Model: Trained model for agent decisions during non-training phases.
Behaviour Type: Sets agent behavior—Default for training and inference, heuristic for manual testing.
 Decision Requester: Controls action update rate from learning model.
Decision Period: Sets interval for action requests—1 for direct script actions.

E. Training process
To enhance the training process, two additional components were incorporated: extrinsic rewards and
curiosity-driven exploration. After that, GAIL was added to learn the parking from recorded demo files.
Extrinsic Reward
An extrinsic reward system is used to guide the agent’s behavior in the parking lot. The agent receives
rewards based on its performance in completing the parking task. The extrinsic rewards serve as a measure
of success and encourage the agent to learn optimal parking strategies.
Behaviour Driven
Behaviour-driven approaches involve shaping the agent’s behavior by incorporating specific rules or expert
knowledge into the learning process.

Training with Generative Adversarial Imitation Learning (GAIL)
To provide the AI with an understanding of the environment from the early stages, 100 demonstration
instances were recorded. These demonstrations are stored in the demo’s folder. By incorporating these
demos into the training process, the AI can learn from the expertise demonstrated in the recordings. The path
to the recorded model is added to the PPO hyperparameters during training, allowing the AI to leverage the
knowledge gained from the demonstrations. The combination of extrinsic reward, behaviour-driven
approaches, and GAIL was used to enhance the training and performance of an autonomous parking system.

www.ijiccs.in 13

By providing extrinsic rewards, the agent receives explicit feedback on its parking performance, enabling it to
learn the desired behaviour more efficiently. Incorporating behaviour-driven techniques allows for the
incorporation of specific parking rules and expert knowledge, further guiding the agent’s actions toward safe
and efficient parking. Additionally, GAIL can be used to leverage expert demonstrations, training the agent to
imitate the behaviour of skilled human drivers. This combination can lead to improved parking performance,
smoother manoeuvres, and better adherence to parking regulations.

F. Vehicle model
During the parking manoeuvre, the vehicle operates at a relatively low velocity. To facilitate motion planning,
a kinematic vehicle model, as depicted in Figure 13, is utilized. This model allows us to represent the vehicle’s
posture in the parking coordinate system using variables (x, y, θ), where (x, y) represents the vehicle’s
position, and (θ), denotes its orientation. Φ stands for the steering angle of the front wheel, and v stands for
the velocity at the center of the rear axle.

G. Kinematic vehicle model
In the low-speed motion scenario, it can be assumed that the car’s wheels only roll without any slipping, and
the lateral dynamics of the tires can be disregarded. Under these assumptions, a car kinematics state change,
including angle and position will be done using the formula below [15].

cos

sin

tan /

x v

y v

v L

(5)

Figure 13: Kinematic model of vehicle [15]

H. Reward function
The reward function in this experiment is designed to evaluate the agent’s actions at each step. Negative
rewards are given to actions that the agent should avoid, such as collisions, with the accumulation of negative
rewards reflecting their impact on safety. The agent receives a sparse reward only when the distance
between the agent and the target decreases by 10%. To gradually communicate progress, the agent is given a
modest positive Dense Reward and Checkpoints reward at each stage. When the agent completes
checkpoints, which act as intermediate goals, they also get an extra reward. The cumulative reward is the sum
of the benefits the agent has received for each episode [20, 21]. This approach encourages the model to strive
for higher rewards from successful parking.

I. Metrics

I. Cumulative Reward:
The cumulative reward chart typically shows the total reward accumulated by the agent over time or
episodes. As the agent investigates the world and picks up new skills, the chart may initially display a random
or low reward. As the agent investigates the world and picks up new skills, the chart may initially display a

www.ijiccs.in 14

random or low reward. As the agent learns and improves its policy, the chart should generally show an
upward trend, indicating increasing rewards.

II. Episode Length:
The episode length chart illustrates the duration or length of each episode during training. At the beginning of
training, the episode length may be relatively long as the agent explores and takes time to learn optimal
actions. As the agent learns and becomes more efficient, the episode length should generally decrease.

III. GAIL Loss:
The GAIL loss chart represents the loss incurred during the training of the discriminator network in the GAIL
algorithm. Initially, the loss may be high as the discriminator struggles to differentiate between expert and
policy actions. As the discriminator learns, the loss should decrease, indicating an improvement in its ability
to distinguish expert actions from policy actions.

IV. Value Loss:
The value loss chart shows the loss incurred during the training of the value function or value estimator.

V. Pre-training Loss:
The pre-training loss chart represents the loss incurred during the pre-training phase of the model.

VI. Policy Loss:
The policy loss chart shows the loss incurred during the training of the policy network. For the value, pre-
training, and policy loss at the beginning of training, the loss may be high, but as the model improves, the loss
should decrease, indicating a better alignment between predicted values and observed rewards.
The metrics collected after training are shown in Figure 14.

Figure 14: Metrics Visualized with Tensor Board

J. Implementation in Unity
The class diagram for the proposed environment is shown in Figure 15.
 Description of some of the classes:

1. The MoveToGoalAgent class represents an agent that learns to navigate a car to reach a goal in a
Unity ML-Agents environment. It uses reinforcement learning to train the agent’s behavior.

2. The CarStripSpawner class is responsible for spawning a strip of cars in a Unity scene.
3. The CarSpawnerclass is responsible for spawning individual cars in a Unity scene.
4. The Car class represents a car in the Unity scene. It typically includes a car model, colliders, and other

components. The exact functionality and behavior of the car differ based on the particular
implementation.

5. The CarController class is responsible for controlling the movement and behavior of a car in a Unity
scene. It typically includes functions for steering, accelerating, braking, and applying physics forces to
the car’s rigidbody component. The specific implementation of the car controller can vary depending
on the desired car physics and behavior.

www.ijiccs.in 15

6. The SimpleCarController class is responsible for controlling a car in a simple driving simulation. It
provides functionality for steering and applying motor torque to the wheels of the car.

Figure 15: Class Diagram of classes used for simulation

K. Optimization of PPOs hyperparameters
The main hyperparameters used are shown in Table 1. There are a lot of recommendations on how to
improve the PPO algorithm by adjusting the hyperparameters [8] [5]. Grid searching represents one of the
potential techniques for optimizing a set of hyperparameters in PPO. It involves sampling a subset of values
for each parameter, and then every combination of these values is evaluated. By exhaustively trying all
combinations, the best-performing configuration can be identified. This method allows for systematic
exploration of the hyperparameter space to find the optimal values for PPO training. This method will be used
to adjust parameters for the PPO [19].
The algorithm steps are described below and shown in Figure 16:

1. Generate all possible combinations of the parameters being grid-searched.
2. For each combination, create a separate PPO YAML configuration file by injecting the parameter

values into a base YAML file.

www.ijiccs.in 16

3. Create individual .slurm files for each parameter combination. These files are used to call the
”magnets-learn” command with the corresponding YAML files.

4. Execute the jobs on the compute cluster of the department. This is done by using the ”srun”
command with each of the .slurm files created in the previous step.

5. Once the training is complete, automatically run ”analysis.py” on all the trained models. This is
achieved by executing ”analysis.py” after ”magnets-learn” in the .slurm files.

6. The result of the analysis can be imported to a spreadsheet and further visualized to gain
comprehensive insights.

7. To compare the output models with the grid-searched parameters, step 5 passes each grid-searched
parameter to ”analysis.py”. This ensures that the parameter values appear as columns in the
resulting CSV output.

Table 1: PPO Hyperparameters

Parameter Value Explanation
Trainer_type PPO Type of trainer (PPO)
Batch_size 1024 Experiences per batch
Buffer_size 5120 Experience replay buffer size
Learning_rate 0.00035 Neural network learning rate
beta 0.0025 Entropy regularization strength
epsilon 0.3 PPO clipping parameter
lambd 0.95 Generalized advantage estimation parameter
Num_epoch 5 Optimization epochs per batch
normalize TRUE Input data normalization
Hidden_units 264 Hidden units per layer
Num_layers 3 Number of layers
gamma(extrinsic) 0.95 Extrinsic reward discount factor
strength (extrinsic) 0.99 Extrinsic reward strength
strength (GAIL) 0.3 GAIL reward strength

6. Conclusions

The research implemented an autonomous parking system in Unity’s simulated environment. The goal was
safe parking in a designated green slot without collisions. To enhance training, extrinsic rewards, behavior-
driven methods, and GAIL were used. Extrinsic rewards guided agent behavior. Positive rewards for
successful parking, negative for collisions. Agent aimed to maximize cumulative reward by learning parking
strategies. This approach has driven the agent to maximize cumulative rewards and develop advanced
parking strategies. Behavior-driven methods shaped agent behavior with rules and expert knowledge,
improving adherence to parking regulations. The introduction of GAIL has significantly improved the
system’s performance. Leveraging 100 expert demonstrations, the AI system learned from these recordings,
resulting in enhanced parking precision, maneuvering, and rule adherence. During the process of training and
simulation, metrics like Stimulative Reward, Episode Length, and GAIL loss evaluated system performance
during training. Additionally, using the grid-search method, various value combinations were evaluated. It led
to faster optimization of PPO algorithm hyperparameters. As a result of this research, the autonomous
parking system was implemented in a simulated environment using the Unity engine. The objective for the
autonomous vehicle, represented by the car agent, was to locate a suitable parking slot highlighted in green
and safely park there without causing any damage to other vehicles. To summarize, the research contributes
to efficient autonomous parking. Insights on optimizing Proximal Policy Optimization parameters using grid
search. The proposed simulation framework supports exploring various aspects of autonomous parking
performance under diverse scenarios.

www.ijiccs.in 17

Figure 16: Proposed algorithm for PPO’s hyperparameters improvement

References

1. Tiong, Teckchai, Ismail Saad, Kenneth Tze Kin Teo, and Herwansyah Bin Lago. "Autonomous Valet

Parking with Asynchronous Advantage Actor-Critic Proximal Policy Optimization." In 2022 IEEE 12th
Annual Computing and Communication Workshop and Conference (CCWC), pp. 0334-0340. IEEE, 2022.

2. Shahi, Saugat, and Heoncheol Lee. "Autonomous Rear Parking via Rapidly Exploring Random-Tree-Based
Reinforcement Learning." Sensors 22, no. 17 (2022): 6655.

3. Feng, Ziyue, Shitao Chen, Yu Chen, and Nanning Zheng. "Model-based decision making with imagination
for autonomous parking." In 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 2216-2223. IEEE, 2018.

4. Albilani, Mohamad, and Amel Bouzeghoub. "Dynamic Adjustment of Reward Function for Proximal Policy
Optimization with Imitation Learning: Application to Automated Parking Systems." In 2022 IEEE
Intelligent Vehicles Symposium (IV), pp. 1400-1408. IEEE, 2022.

5. Zhang, Peizhi, Lu Xiong, Zhuoping Yu, Peiyuan Fang, Senwei Yan, Jie Yao, and Yi Zhou. "Reinforcement
learning-based end-to-end parking for automatic parking system." Sensors 19, no. 18 (2019): 3996.

6. Tanner, Omar. "Multi-Agent Car Parking using Reinforcement Learning." arXiv preprint arXiv:2206.13338
(2022).

7. Thunyapoo, Baramee, Chatree Ratchadakorntham, Punnarai Siricharoen, and Wittawin Susutti. "Self-
parking car simulation using reinforcement learning approach for moderate complexity parking

www.ijiccs.in 18

scenario." In 2020 17th International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), pp. 576-579. IEEE, 2020.

8. Urmanov, Marat, and Madina Alimanova. "Training a single Machine Learning Agent using Reinforcement
Learning and Imitation Learning methods in Unity environment." Suleyman Demirel University Bulletin:
Natural and Technical Sciences 52, no. 1 (2020).

9. P. Pandita. Evaluation of soft actor critic in diverse parking environments. Master’s thesis.
10. Urmanov, Marat, and Madina Alimanova. "Training a single Machine Learning Agent using Reinforcement

Learning and Imitation Learning methods in Unity environment." Suleyman Demirel University Bulletin:
Natural and Technical Sciences 52, no. 1 (2020).

11. Quang Tran, Duy, and Sang-Hoon Bae. "Proximal policy optimization through a deep reinforcement
learning framework for multiple autonomous vehicles at a non-signalized intersection." Applied Sciences
10, no. 16 (2020): 5722.

12. D. Liu. Learning to imitate: using gail to imitate ppo, 2021.
13. Kiran, B. Ravi, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and

Patrick Pérez. "Deep reinforcement learning for autonomous driving: A survey." IEEE Transactions on
Intelligent Transportation Systems 23, no. 6 (2021): 4909-4926.

14. Juliani, Arthur, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy
et al. "Unity: A general platform for intelligent agents." arXiv preprint arXiv:1809.02627 (2018).

15. Majumder, Abhilash. Deep Reinforcement Learning in Unity: With Unity ML Toolkit. Apress, 2021.
16. Shahi, Saugat, and Heoncheol Lee. "Autonomous Rear Parking via Rapidly Exploring Random-Tree-Based

Reinforcement Learning." Sensors 22, no. 17 (2022): 6655.
17. Anwar, Muhammad, Changlong Wang, Frits De Nijs, and Hao Wang. "Proximal policy optimization based

reinforcement learning for joint bidding in energy and frequency regulation markets." In 2022 IEEE
Power & Energy Society General Meeting (PESGM), pp. 1-5. IEEE, 2022.

18. https://assetstore.unity.com/packages/3d/vehicles/ukraine-free-cars-191822
19. Thomas Van Iseghem. Ai-parking-unity, 2021.
20. https://medium.com/xrpractices/autonomous-car-parking-using-ml-agents-d780a366fe46
21. Saha, Sumit. "A comprehensive guide to convolutional neural networks—the ELI5 way." Towards data

science 15 (2018): 15.

